展开

关键词

Swift 旋转图像 - LeetCode

题目:旋转图像 描述: 给定一个 n × n 的二维矩阵表示一个图像。 将图像旋转 90 度(顺时针)。 注意: 你必须在原矩阵中旋转图像,请不要使用另一个矩阵来旋转图像。 15,14,12,16] ], 旋转输入矩阵,使其变为 : [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ] 在计算机图像处理里 ,由于图片的本质是二维数组,所以也就变成了对数组的操作处理,翻转的本质就是某个位置上数移动到另一个位置上。 (只会这一种,后面两种都是抄的,只是改成了用Swift语言) 1 2 3 7 2 1 7 4 1 4 5 6 -> 4 5 6 -> 8 5 2 7 8 9 9 8 dlroW olleH 用Swift开始学习算法中,在LeetCode中开始做初级算法这一章节,将做的题目在此做个笔记吧。

62630

图像处理-图像增强

图像增强前期知识 图像增强是图像模式识别中非常重要的图像处理过程。 图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。 一幅输入图像经过灰度变换后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。灰度变换不会改变图像内的空间关系。图像的几何变换是图像处理中的另一种基本变换。 相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 3、频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强。 图像增强的方法分类: |图像增强方法|实现方法| |-|-| |处理对象|灰度图| ||(伪)彩色图| |-|-| |处理策略|全局处理| ||局部处理(ROI ROI,Region of Interest

10910
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像处理-图像滤波

    和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ 高斯分布:h(x,y)=e^-(\frac{x^2+y^2}{2a^2}) 双边滤波 一种非线性的滤波方法,是结合图像的空间邻近度和像素相似度的的一种折中处理 中心像素的距离和灰度差值的增大,邻域像素的权系数逐渐减小 优点:保持边缘性能良好,对低频信息滤波良好 缺点:不能处理高频信息 假设高斯函数表达式如下: W_ij=\frac{1}{K_i}e^-\frac 其中: f:待滤波图像 w:滤波模板 option1, option2:可选项 可选项分为: (1) 边界项:遍历处理边界元素时,需要提前在图像边界周围补充元素 参数:`X`--表示具体的数字,默认用 `0`补充 `symmetric`--镜像边界元素 `replicate`--重复边界像素 `circular`--周期性填充边界内容 (2) 尺寸项:处理图像前扩充了边界,比原图大一圈,此项输出图像大小 ,首先把图像通过傅里叶变换将图像从空间域转换到频率域,频域处理,反傅里叶变换转到空间域 |||| |-|-|-| |||| C++代码 均值滤波 void meanFilter (unsigned char

    8920

    图像处理-图像噪声

    图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。 椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。 椒盐噪声严重影响图像的视觉质量,给图像的边缘检测、纹理或者特征点提取等造成困难。 Based algorithm for removal of high density impulse noises) 一般会选择先检测再滤波的思路,通过开关机制抑制噪声,上述方法对低噪声水平的椒盐噪声处理效果良好 因为基于中值的滤波方法仅考虑图像局部区域像素点的顺序阶信息,没有充分利用像素点之间的相关性或相似性。噪声像素点的估计值可能与真实值有较大偏差,很难保持图像的细节信息。

    5510

    图像处理-图像融合

    一般情况下,我们先会对不同传感器取得的各自信息及信号进行一个整合加强过程,例如图像间的配准,图像边缘增强,图像纹理平滑,抑制背景杂波等;然后我们要做的是对于融合层和融合算法的选取,不同的算法处理方式和提取特征信息的方法不同 2、对于同一目标的多源图像信号的采集。通过传感器进行目标信号采集,采集过程虽然简单,却可也不能轻视,好的采集方法可以获得更优质的信号信息,为后续的信号处理过程打下基础。 3、对于采集信号的预处理。 收集到的信号不一定直接就能用,在进行图像融合之前,对采集到的信号进行去噪、增强、配准等预处理,可以大大提高图像的对比度以及分辨率,有助于图像融合效果的进一步提高。 4、图像融合过程。 图像融合处理过程的流程框图如下: 不同的层次所进行数据处理的要求和融合算法是不一样的,需要具体问题具体分析,通常我们将图像数据分为三层,融合过程流程图如下: 图像融合层简介: 1、基于像素级的图像融合属于最基本的图像融合技术 这一层主要是直接处理图像的单像素,因为像素级是由源场景的图像最大化描述的。像素级图像融合需要对图像进行预处理,包括图像配准、滤波和增强。

    9720

    Swift-图像的性能优化

    ---- 为什么我们说这种方法设置图像效果不好 Color Misaligned Images(拉伸图像->检测图片有没有被拉伸) 创建一个自定义尺寸的ImageView,并设置图像 let image 事实证明,如果图像尺寸和ImageView尺寸不一致,图像就一定会被拉伸,只要被拉伸,CPU就会工作,如果是在cell上,每次cell离开屏幕再回到屏幕的时候,都会对图片进行拉伸处理。 , size: rect.size) view.addSubview(imageView02) } 自定义创建图像的方法 /// 将给定的图像进行拉伸,并且返回新的图像 /// /// 判断一个应用程序的好坏,看图像处理的是否到位,如果表格里面图像都拉伸,并且设置cornerRadius,那么表格的卡顿可能将会变得非常明显。 建立了一个空白文件HQImage,在UIImage的extension里面自定义了两个方法创建头像图像(hq_avatarImage)和创建矩形图像(hq_rectImage) // MARK: - 创建图像的自定义方法

    56470

    Swift处理多级Codable数据

    Codable协议使处理简单的单层数据变得容易:如果您处理的是一个类型的单个实例,或者这些实例的数组或字典,那么一切就正常了。 但是,在此项目中,我们将处理稍微复杂的JSON:一个数组内部将使用不同的数据类型来组成另一个数组。 如果要处理这种多级数据,关键是为每个级别创建单独的类型。 只要数据与您要求的层次结构匹配,Codable便能够处理所有内容,而无需我们做进一步的工作。 为了演示这一点,请将此按钮放入您的内容视图: Button("Decode JSON") { let input = """ { "name": "Taylor Swift Codable能处理的级别数量没有限制——重要的是您定义的结构体与JSON字符串匹配。 这使我们到了该项目的概述的结尾,因此请继续将ContentView.swift重置为其原始状态。

    57410

    图像处理-图像去雾

    图像处理-图像去雾 雾图模型 I(x)=J(x)t(x)+A(1-t(x)) I(x) ——待去雾的图像 J(x)——无雾图像 A——全球大气光成分 t——折射率(大气传递系数) 暗通道先验 在无雾图像中 总之,自然景物中到处都是阴影或者彩色,这些景物的图像的暗原色总是很灰暗的。 首先求出每个像素RGB分量中的最小值,存入一副和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波(邻域中取最小值) 验证了暗通道先验理论的普遍性 计算折射率 t(x)=1-wmin(minI (y)/A) 估计大气光 1.选取暗通道图像暗通道最亮的0.1%的像素(一般来说,这些像素表示雾浓度最大的地方) 2.取输入图像里面这些像素对应的像素里面最亮的作为大气光 (暗图像最亮的0.1%的像素对应的原图最亮的为大气光 去雾 J(x)=I(x)-A/max(t(x),t0) +A t0=0.1 流程: 1.求图像暗通道 2.利用暗通道计算出折射率 3.利用暗通道估计大气光 4.代回雾图公式去雾 我的代码-图像去雾算法Matlab

    11020

    图像处理-Retinex图像增强

    图像处理_Retinex图像增强 单尺度SSR (Single Scale Retinex) 图像S(x,y)分解为两个不同的图像:反射图像R(x,y),入射图像L(x,y) 图像可以看做是入射图像和反射图像构成 而L(x, y)表示入射光图像,决定了图像像素能达到的动态范围,我们应该尽量去除。 我们把照射图像假设估计为空间平滑图像,原始图像为S(x, y),反射图像为R(x, y),亮度图像为L(x, y),使用公式 r(x,y)=logR(x,y)=log\frac{S(x,y)}{L(x, 、全局动态范围压缩,也可以用于X光图像增强。 处理后的图像局部对比度提高,亮度与真实场景相似,在人们视觉感知下,图像显得更加逼真。 参考文章

    18010

    图像处理-图像插值

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真 2,双线性二次插值 3、三次内插法 内插值,外插值 两张图像混合时通过内插与外插值方法可以实现图像亮度、对比度、饱和度、填色、锐化等常见的图像处理操作。 外插值方法:可以用来生成跟内插值效果相反的图像。 比如内插值模糊图像,通过外插值可以去模糊,外插值可以调节饱和度,可以实现图像一些列的处理比如亮度、饱和度、对比度、锐化调整。 自适应的方法可以根据插值的内容来改变(尖锐的边缘或者是平滑的纹理),非自适应的方法对所有的像素点都进行同样的处理。 双三次产生的图像比前两次的尖锐,有理想的处理时间和输出质量。因此,在很多图像编辑程序中是标准算法 (包括 Adobe Photoshop), 打印机和相机插值。

    8510

    python图像处理-滤镜处理

    前言 很多时候用手机拍完照,为了让照片看上去更好看,我们都会对照片做一些处理,而这里用的最多的方法就是滤镜了,常用的滤镜一般有模糊滤镜,其它的就是一些风格的变换了,比如黑白老照片,怀旧复古风,素描铅笔艺术风等 今天我们就尝试用python的PIL库对图片做一些滤镜处理,希望可以带给你一些想法。 打开原始图片 这里我用的是一张猫的图片,先打开原图查看。 ? 进行模糊滤镜处理 PIL中的ImageFilter模块中已经有很多集成好的滤镜方法,这里我们直接调用,原理下一篇会详细讲解并自己尝试者去实现同样的效果。 ? 循环对比展示所有滤镜处理 这里将ImageFilter中几个滤镜属性直接调用了,有些看上去效果并不明显,比如模糊滤镜效果就不是很明显,还有不同图片的效果也是不一样的,比如猫的边界滤镜并没有找到明显滤镜,

    49020

    图像处理基础

    现如今我们每时每刻都在与图像打交道,而图像处理也是我们绕不开的问题,本文将会简述图像处理的基础知识以及对常见的裁剪、画布、水印、平移、旋转、缩放等处理的实现。 01 — 图像处理基础 在进行图像处理之前,我们必须要先回答这样一个问题:什么是图像? 答案是像素点的集合。 ? 例如上述 4 x 4 RGB 图像可转换为: ? 图像处理的本质实际上就是在处理像素矩阵即像素多维数组运算。 02 — 基本处理实现 对于图像的基本处理,本文示例使用的是 opencv-python 和 numpy 库。 示例: ? 裁剪:切割矩阵即可。 本文介绍了图像处理的基础,以及通过 OpenCV 实现了几种常见的图像处理功能。

    20020

    图像简单处理

    (Bitmap img) { this.bitmap = img; } ///

    /// 构造图像识别 this.bitmap = destBitmap; return this; } /// /// 二值化处理 } } return this; } /// /// 柔化处理 this.bitmap = newbmp; return this; } /// /// 图像锐化处理 ImageDistinguish ClearNoise() { int x, y; byte[] p = new byte[9]; //最小处理窗口

    16140

    医学图像处理

    目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。 用深度学习方法进行数据分析呈现快速增长趋势,称为2013年的10项突破性技术之一。 与单核的CPU处理相比,今天使用的图形处理单元(GPU)计算机芯片实现了大幅加速(大约40倍)。在医学图像处理中,GPU首先被引入用于分割和重建,然后用于机器学习。 2、图像分割 医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象。 4、图像融合 图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。 在计算机辅助图像处理的基础上,开发出综合利用图像处理方法, 结合人体常数和部分疾病的影像特征来帮助或模拟医生分析、诊断的图像分析系统成为一种必然趋势。

    2K42

    ios 图像处理

    CGContextRef context = UIGraphicsGetCurrentContext();

    17430

    OpenCV图像处理(十六)---图像直方图

    前言 在上一期的文章中,我们学习了图像的轮廓特征,主要学习了轮廓检测函数和框选函数。今天,我们将继续学习图像的新知识--直方图。 我们看看一下吧,直方图简单来说就是图像中每个像素值的个数统计,比如说一副灰度图中像素值为0的有多少个,1的多少个……直方图是一种分析图片的手段,当然,图像中比较常见的颜色格式是彩色和灰度的,针对灰度图像直方图 (图像原始数据,像素的范围) 图像的灰度级是0-255,一共256个。 mask : 掩码图像 统计整幅图像的直方图,设为None。 直方图的作用:从上面的实例我们可以了解到,其实每一个图像的直方图是不一样的,由此,直方图可以用来进行比较不同的图像,不过直方图用到最多的是,均衡化,何为均衡化,简单地说,使得图像的像素值尽量分布均匀,而不是高低差落较大

    7810

    OpenCV图像处理(十三)---图像滤波

    前言 在上一期的文章中,我们学习了图像阈值化(二值化)处理方法,阈值化操作很实用,特别是以后的去除噪点,图像分割等等都会涉及到一定的阈值操作。 今天我们继续来学习图像的另一个技术--图像滤波。 一、图像滤波 一、图像滤波简介 滤波的在数字信号处理这门课程中的本义是,对各种数字信号中的某一或指定频率进行过滤(也可以理解为不想要的频率),最后筛选出我们想要的频率的信号,这即是滤波的过程,也是目的 我们常见的拍摄的图像中或多或少存在一些噪声,常见的图像噪声如高斯噪声、瑞利噪声、椒盐噪声等。 imshow('dst',dst) cv2.waitKey(0) (可以看到高低双边滤波似乎变化不大,但别忘了像素分布取值已经不同了哦) 结语 今天的分享到此结束了,滤波操作将会是以后的图像处理和视频处理的基本操作

    6920

    图像处理基础-图像边缘检测

    图像处理经常会用到这张赫赫有名的图片,这位lena女士的照片原本用在“花花公子”的杂志封面上,机缘巧合被当做测试素材,广泛用在图形处理领域。 原图是一张半裸的全身照,截取了头像部分,有兴趣可以去网上找找 参考:Lena.jpg IEEE图像处理汇刊的主编David C.Munson总结了两点原因: 1.该图适度的混合了细节、平滑区域、阴影和纹理 ,从而能很好的测试各种图像处理算法。 2.Lenna是个美女,对于图象处理界的研究者来说,美女图可以有效的吸引他们来做研究 图像边缘检测的算法有很多,包括传统的模板算⼦(Sobel、Roberts、Prewitt、Laplace)、形态学边缘检测 降噪-高斯滤波平滑处理 ? 2.

    35010

    OpenCV图像处理

    转换灰度图像 1.1 读取图像 import cv2 as cv # 读取图片 img = cv.imread('.. = array(Image.open("Resources/Photos/park.jpg").convert('L')) ​ im2 = 255 - im # 对图像进行反相处理 ​ im3 = (100.0/255) * im + 100 # 将图像像素值变换到 100...200 区间 ​ im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像 参考 python图像数组操作与灰度变换

    12530

    图像处理基础

    作者简介 本文来自鲍骞月的投稿,主要讲解图像处理基础,欢迎大家积极留言,提出你的疑问或者建议,与投稿小伙伴交流。 将各通道像素值装载整体数值 原理同样通过位运算实现 像素值统计信息(灰度图) 这里我们想要实现一下图像二值化而且减少重复的一些操作,所以这里只对灰度图进行操作。 width * height; variance = Math.sqrt(num /len); System.out.println("variance:"+ variance); 输出: 通过均值的图像二值化 我们具体实现一下: /** * 通过均值实现图像的二值化 */ for(introw =; row < height; row++) { for(intcol =; col < width; col++

    42160

    相关产品

    • 图像分析

      图像分析

      腾讯云图像分析基于深度学习等人工智能技术,提供综合性图像理解、图像处理、图像质量评估等服务,包含图像标签、logo识别、动漫人物识别、植物识别等,可以用于智能相册、视频理解、AI营销等场景…..

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券