首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将自己开发的模型转换为TensorFlow Lite可用模型

继Apple发布CoreML之后,Google发布了TensorFlow Lite的开发者预览版,这是TensorFlow Mobile的后续发展版本。...通过在支持它的设备上利用硬件加速,TensorFlow Lite可以提供更好的性能。它也具有较少的依赖,从而比其前身有更小的尺寸。...在这篇文章中,我们将学习一些通用的技巧,一步一步为移动设备准备一个TFLite模型。...由于我们希望准备好的模型仅用于移动平台上的推断(在MNIST数据的情况下预测手写数字),因此我们只需要预测所需的图层。请记住,我们正在使用的MNIST脚本既有训练又有预测。...不要让TensorFlow为您做。由于我们在训练脚本中做了一些小改动,我们可以轻松填写每个转换工具中的不同选项。

3.1K41

基于tensorflow的LSTM 时间序列预测模型

,对整体模型的理论性能不会有影响。...:趋势,季节性和波动,通过统计学算法将序列分离,得到每个部分的模型再相加,但是模型对于序列的方差、均值平稳性以及自相关性都有很高的要求,否则模型偏差会很大。...tensorflow中已经为我们准备好了LSTM层的接口,根据需要配置即可。...这里列举几个重要的注意点: 首先要理解什么是序列和序列化数据,比如如果我要预测24小时的天气,那将会有很多种方案,每种方案的序列化都不一样,若模型输出就是24小时的序列,那么输入序列可以是 t-1之前任意长度的序列...总之,每种做法效果不一样,具体问题还需要具体分析; TIME_STEPS参数,可以理解为时间步,就是你需要几个时刻的样本来预测,INPUT_SIZE 为每个样本的维度,如果你的样本数据是一个单一序列,没有其他特征的话

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用TensorFlow动手实现的简单的股价预测模型

    本文是一个通过模拟预测股票,教会大家如何动手操作TensorFlow的教程,结果不具有权威性。因为股票价格的实际预测是一项非常复杂的任务,尤其是像本文这种按分钟的预测。...否则,在预测时使用未来的信息,通常偏向于正向预测指标。 TensorFlow简介 TensorFlow是一个深度学习和神经网络中处于领先地位的计算框架。...这就是TensorFlow的工作原理。用户通过占位符和变量来定义模型(神经网络)的抽象表示。然后占位符用实际数据“填充”,并发生实际计算。...占位符用于在图中存储输入数据和目标数据,而向量被用作图中的灵活容器在图形执行过程中允许更改。权重和偏置被表示为向量以便在训练中调整。向量需要在模型训练之前进行初始化。稍后我们会详细讨论。...此时的占位符,X和Y发挥作用。他们存储输入和目标数据,并将其作为输入和目标在网络中显示。 采样数据X批量流经网络,到达输出层。在那里,TensorFlow将模型预测与当前批量的实际观测目标Y进行比较。

    1.3K60

    【技术创作101训练营】TensorFlow Lite的 GPU 委托(Delegate)加速模型推理

    本文大致目录结构如下: 什么是委托代理及其优点; 如何添加一个代理; Android 如何使用 C++ API 使用 GPU 代理; TensorFlow LIte 的 GPU 代理; 当前GPU支持的模型和算子...中间的结点被代理处理,就成为黑盒。这个过程也可以理解成是 TFLite 对模型做了“翻译”,将其”翻译”为将执行后端的黑盒子图。...TensorFlow LIte 的 GPU 代理 [图3 TensorFlow Lite的Demo展示安卓 GPU 推理] 图 TensorFlow Lite的Demo展示安卓 GPU 推理 没说安卓的其他设备...image.png 这点上 TensorFlow MobileNetV1和V2的共同结构(见上图,分别是MobileNetV1的TensorFlow原始模型、TFLite模型、Caffe模型可视化)就是模型最后有...本文对委托代理(Delegate)做一定的解释,因为仅从TensorFlow Lite的文档出发结合我的思考,并介绍了委托代理在TensorFlow Lite中的实现方式,对TensorFlow Lite

    5.4K220191

    TensorFlow Lite发布重大更新!支持移动GPU、推断速度提升4-6倍

    乾明 发自 凹非寺 量子位 出品 | 公众号 QbitAI TensorFlow用于移动设备的框架TensorFlow Lite发布重大更新,支持开发者使用手机等移动设备的GPU来提高模型推断速度。...虽然TensorFlow Lite提供了不少的加速途径,比如将机器学习模型转换成定点模型,但总是会在模型的性能或精度上做出让步。...在Pixel 3的人像模式(Portrait mode)中,与使用CPU相比,使用GPU的Tensorflow Lite,用于抠图/背景虚化的前景-背景分隔模型加速了4倍以上。...使用GPU加速,对于更复杂的神经网络模型最为重要,比如密集的预测/分割或分类任务。 在相对较小的模型上,加速的效果就没有那么明显了,使用CPU反而有利于避免内存传输中固有的延迟成本。 如何使用?...当前发布的,只是TensorFlow Lite的开发者预览版。

    73730

    TensorFlow Lite发布重大更新!支持移动GPU、推断速度提升4-6倍

    虽然移动设备的处理能力和功率都有限。虽然TensorFlow Lite提供了不少的加速途径,比如将机器学习模型转换成定点模型,但总是会在模型的性能或精度上做出让步。...随着 TensorFlow Lite GPU 后端开发者预览版的发布,将能够利用移动 GPU 来选择模型训练 (如下所示),对于不支持的部分,将自动使用 CPU 进行推理。...GPU 与 CPU 性能 在Pixel 3的人像模式(Portrait mode)中,与使用CPU相比,使用GPU的Tensorflow Lite,用于抠图/背景虚化的前景-背景分隔模型加速了4倍以上。...在更加复杂的神经网络模型上 GPU 加速效果最显著,这些模型本身更有利于 GPU 的利用,例如密集的预测 / 分割或分类任务。...以 Android 为例,谷歌已经准备了一个完整的 Android 存档 ( AAR ),包括带有 GPU 后端的 TensorFlow Lite。

    1.3K20

    基于Tensorflow2 Lite在Android手机上实现图像分类

    Lite在Android手机上实现图像分类 前言 Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。...本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。...以下是使用Tensorflow2的keras搭建的一个MobileNetV2模型并训练自定义数据集,本教程主要是介绍如何在Android设备上使用Tensorflow Lite部署分类模型,所以关于训练模型只是简单介绍...Tensorflow Lite工具 编写一个TFLiteClassificationUtil工具类,关于Tensorflow Lite的操作都在这里完成,如加载模型、预测。...目录的,但是Tensorflow Lite并不建议直接在assets读取模型,所以我们需要把模型复制到一个缓存目录,然后再从缓存目录加载模型,同时还有读取标签名,标签名称按照训练的label顺序存放在assets

    3.3K40

    实战|TF Lite 让树莓派记下你的美丽笑颜

    我们很难在使用单个模型检测人脸并预测笑脸得分结果的同时保证高精度和低延迟。因此,我们通过以下三个步骤来检测笑脸: 应用人脸检测模型来检测给定的图像中是否存在人脸。...人脸检测 我们的人脸检测模型由定制的 8 位 MobileNet v1 模型和深度乘数为 0.25 的 SSD-Lite 模型所构成。其大小略大于 200KB。为什么这个模型这么小?...第一,基于 Flatbuffer 的 TensorFlow Lite 模型大小比基于 Protobuf 的 TensorFlow 模型小。第二,我们采用 8 位量化模型。...人脸裁剪工具图示 人脸属性分类 我们的人脸属性分类模型也是 8 位量化 MobileNet 模型。将 128x128 的标准人脸输入该模型,其会输出介于 0 到 1 的浮点型变量用于预测微笑的概率。...该模型也会输出 90 维向量来预测年龄,范围在 0 到 90 之间。其在 Raspberry Pi 上的推理时间可以达到 30 毫秒左右。 如何识别语音命令?

    1.8K10

    使用 TFLite 在移动设备上优化与部署风格转化模型

    针对移动设备优化的预训练风格转化模型,以及在 Android 和 iOS 上的示例应用,可用来为任何图像转换风格。...量化是适用于大多数 TensorFlow 模型移动部署的一项重要技术,在本例中,它可将模型大小缩小为原来的 1/4,在大幅加速模型推理的同时,对质量的影响很小。...首先,我们利用风格预测网络将风格提取为浮点数组。然后,我们利用风格转换网络对内容图像应用此风格。...://tensorflow.google.cn/lite/performance/post_training_float16_quant 另一种可能提升性能的方式是:缓存风格预测网络的结果,如果您的移动应用仅计划支持一组固定的风格图像...TensorFlow Hub 中提供了 float16(预测网络、转换网络)和 int8 量化版本(预测网络、转换网络)两种模型版本。我们迫不及待地想要看看您的作品!不要忘了与我们分享您的创作。

    1.7K20

    安卓软件开发:如何实现机器学习部署到安卓端

    = outputs.outputFeature0AsTensorBuffer.floatArray // 找到最大的预测值的索引 val predictedDigit...TensorFlow Lite 提供了量化技术,模型的权重和激活函数从浮点数表示转换为整数,从而减少模型大小加快推理速度。...5.3 模型的跨平台兼容性 保证应用在特定设备上运行良好,还要确保在不同硬件架构的设备上(如 armeabi-v7a 和 arm64-v8a)都能正常工作,涉及到 TensorFlow Lite 模型在不同设备间的兼容性...六、学习技术笔记 6.1 简化模型部署的体验 TensorFlow Lite 很好地简化了模型的部署过程,让开发者无需过多关注底层优化细节,就能在移动端上部署机器学习模型。...6.3 跨平台兼容性和挑战 ONNX 格式为模型的跨平台迁移提供了强有力的支持。

    71994

    TensorFlow 智能移动项目:11~12

    ,TensorFlow Lite 在馈入 TensorFlow Lite 模型进行推理时使用interpreter->inputs()[0]而不是特定的输入节点名称。...在 iOS 中为 TensorFlow Lite 使用经过重新训练的 TensorFlow 模型 在第 2 章,”通过迁移学习对图像进行分类“中,我们重新训练了 MobileNet TensorFlow...在接下来的两个部分中,我们将向您展示两个教程,该教程以 TensorFlow 为后端,在 Keras 中如何转换和使用 Scikit Learn 模型和股票预测 RNN 模型,它们是在第 8 章, “使用...我们将研究如何使用这两种算法为房价预测建立模型。 建立和转换 Scikit Learn 模型 首先,让我们获取房价数据集,该数据集可从这里下载。...您将在下一节中看到使用从 Keras 和 TensorFlow 模型转换而来的股票预测 Core ML 模型得到的 Objective-C 和 Swift 示例。

    4.3K10

    使用TensorFlow Lite在Android手机上实现图像分类

    这在本章中我们将介绍谷歌的TensorFlow Lite。...的版本为:Tensorflow 1.14.0 转换模型 手机上执行预测,首先需要一个训练好的模型,这个模型不能是TensorFlow原来格式的模型,TensorFlow Lite使用的模型格式是另一种格式的模型...1、最方便的就是在训练的时候保存tflite格式的模型,主要是使用到tf.contrib.lite.toco_convert()接口,下面就是一个简单的例子: import tensorflow as...,使用训练保存的检查点和export_inference_graph.py输出的预测图,来冻结模型。...tensorflow-lite:0.0.0-nightly' 然后在android下加上以下代码,这个主要是限制不要对tensorflow lite的模型进行压缩,压缩之后就无法加载模型了: /

    3.8K41

    TensorFlow在移动设备与嵌入式设备上的轻量级跨平台解决方案 | Google 开发者大会 2018

    移动终端上有更小的内存 对省电有要求 更弱的计算能力 对机器学习来说更是困难,我们为服务器开发的机器学习模型通常比较大,需要较大的内存,模型复杂,需要更多的耗电量和计算能力。...TensorFlow Lite的优化 相较于TensorFlow,TensorFlow Lite进行了如下优化: 压缩模型:缩小模型体积 量化 (Quantization):TensorFlow模型中包含大量的矩阵...、物体检测、图像分割、文字预测、等等。...转换格式 使用TensorFlow Lite转换器转换为TensorFlow Lite可用的模型,模型转换代码如下: import tensorflow.contrib.lite as lite graph_def_file...量化会造成模型精确度的损失,但据观察,对图像、音频模型预测精确度影响很小。经过量化,CNN模型可增加10~50%的性能提升,RNN可以增加到3倍性能提升。

    2.2K30

    编译tensorflow-lite-with-select-tf-ops遇到的坑

    前言 最近在将tf训练的模型迁移到Android端,使用的是tensorflow-lite,由于模型用到了一些tflite还没有支持的op,所以需要让tflite支持tf的op,官方没有直接给出aar,...,你将在如下目录找到编译好的aar: bazel-genfiles/tensorflow/lite/java/tensorflow-lite-with-select-tf-ops.aar 【6】 大功告成...,但是,我就是那个运气极其差的,总是遇到些奇怪的问题,我这算是有两个吧 -------- “undeclared inclusion(s)” error ERROR: /data/vellhe/tensorflow-master.../tensorflow/lite/c/builtin_op_data.h:154:9: warning: empty struct has size 0 in C, size 1 in C++ [-Wextern-c-compat.../tensorflow/lite/c/builtin_op_data.h:157:9: warning: empty struct has size 0 in C, size 1 in C++ [-Wextern-c-compat

    5.7K141

    深度神经网络移动终端GPU加速实践

    终端部署 上面我们训练得到的模型是Tensorflow的模型,为了能在终端设备跑Tensorflow的模型,Tensorflow推出了Tensorflow Mobile和Tensorflow Lite两套移动设备解决方案...模型转换 不管是在Tensorflow Lite还是在Tensorflow Mobile跑,Tensorflow的模型都需要使用Tensorflow提供的工具转换,压缩模型大小并调整内存布局,转换后的模型才能适合在移动终端设备上跑...Tensorflow的模型一般为pb格式,图数据和参数数据都固化在pb文件里,Tensorflow提供了命令行,可以把pb文件转化成Tensorflow Lite支持的tflite文件。...集成了Tensorflow Lite库的app就可以调用相关API来加载并运行模型。...GPU加速模型 虽然借助Tensorflow平台和Tensorflow Lite,模型已经可以在终端工作起来做图像识别分类了,但是Tensorflow Lite是基于CPU去做推断预测的,推断预测的速度不够理想

    1.9K40

    谷歌移动端深度学习框架TensorFlow Lite正式发布

    而 TensorFlow Lite 允许设备端的机器学习模型的低延迟推断。在本文中,TensorFlow 团队将向我们介绍 TensorFlow Lite 的特点,并展示一个可用的轻量级模型。...今天的发布内容还包括了一个演示 APP,从而可以轻松地下载和在你的移动设备上试用一键智能回复。该架构允许基于应用需求对模型尺度和预测质量进行简易配置。...谷歌也为图学习框架训练了其他轻量级模型,甚至引入了半监督学习。...这些使用机器学习架构的模型(以及未来即将推出的模型)将被很多自然语言处理与计算机视觉应用所采用,嵌入到已有 APP 中,为终端设备带来智能。...Note:目前的设备端模型是面向小尺寸、低延迟应用进行训练和优化的,适用于手机和可穿戴设备。在谷歌自有的 APP 中,智能回复的预测是通过更大、更复杂的模型完成的。

    1.3K80

    谷歌正式发布移动端深度学习框架TensorFlow Lite

    而 TensorFlow Lite 允许设备端的机器学习模型的低延迟推断。在本文中,TensorFlow 团队将向我们介绍 TensorFlow Lite 的特点,并展示一个可用的轻量级模型。...今天的发布内容还包括了一个演示 APP,从而可以轻松地下载和在你的移动设备上试用一键智能回复。该架构允许基于应用需求对模型尺度和预测质量进行简易配置。...谷歌也为图学习框架训练了其他轻量级模型,甚至引入了半监督学习。...这些使用机器学习架构的模型(以及未来即将推出的模型)将被很多自然语言处理与计算机视觉应用所采用,嵌入到已有 APP 中,为终端设备带来智能。...Note:目前的设备端模型是面向小尺寸、低延迟应用进行训练和优化的,适用于手机和可穿戴设备。在谷歌自有的 APP 中,智能回复的预测是通过更大、更复杂的模型完成的。

    1K80

    Google正式发布TensorFlow Lite预览版,针对移动嵌入设备的轻量级解决方案

    模块如下: TensorFlow Model: 存储在硬盘上已经训练好的 TensorFlow 模型 TensorFlow Lite Converter: 将模型转换为 TensorFlow Lite...MobileNet:能够识别1000种不同对象类的视觉模型,为实现移动和嵌入式设备的高效执行而设计。...在推理过程中,训练后的投影模型会被编译成一系列 TensorFlow Lite 的操作,而这些操作都是为移动平台的快速执行优化过的,可以直接在设备上执行。...这个架构能根据应用需求提供不同模型大小、不同预测质量的配置功能,操作也很方便。...除了一些已知的模型可以给出很好回复的消息之外,系统还可以把一组固定的聊天对话中观察到、然后学习编译到模型中的流行的回复语句作为预测失败后的备选语句。

    81670

    推出 TF Lite Task Library 接口,简化 ML移动端开发流程

    Lite 模型运行推理不仅仅是与模型交互,还需要额外的代码来处理复杂的逻辑,如数据转换、预处理/后处理、加载关联文件等。...额外的代码 https://tensorflow.google.cn/lite/guide/lite_support 今天,我们将为大家介绍 TensorFlow Lite Task Library,这是一组功能强大且易于使用的模型接口...ImageSegmenter 图像分割器预测图像的每个像素是否与某个类相关联。这与物体检测(检测矩形区域中的物体)和图像分类(对整个图像进行分类)相反。...TensorFlow Lite Model Maker 创建的模型。 AutoML Vision Edge 创建的模型。...模型 https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1 为您的用例构建一个 Task API 如果现有 Task 库不支持您的用例

    1.3K40
    领券