首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中的加权随机

我们平时比较多会遇到的一种情景是从一堆的数据中随机选择一个, 大多数我们使用random就够了, 但是假如我们要选取的这堆数据分别有自己的权重, 也就是他们被选择的概率是不一样的, 在这种情况下, 就需要使用加权随机来处理这些数据...), 2(概率0.5) 简单的思路就是把所有的权重加和, 然后随机一个数, 看看落在哪个区间 import random def weighted_choice(weights): totals...加速搜索 上面这个方法看起来非常简单, 已经可以完成我们所要的加权随机, 然是最后的这个for循环貌似有些啰嗦, Python有个内置方法bisect可以帮我们加速这一步 import random import...去掉临时变量 其实在这个方法里面totals这个数组并不是必要的, 我们调整下策略, 就可以判断出weights中的位置 def weighted_choice(weights): rnd = random.random...使用accumulate 在python3.2之后, 提供了一个itertools.accumulate方法, 可以快速的给weights求累积和 >>>> from itertools import

2.1K30

TensorFlow 2.0中的多标签图像分类

在捕捉新电影的海报(动作,戏剧,喜剧等)时,会利用直觉和印象来猜测新电影的内容。可能曾经在地铁站中遇到过这种情况,想从墙上的海报中猜测电影的类型。...使用TensorFlow数据集加快输入管道,以非常有效的方式传递训练和验证数据 使用TensorFlow Serving,TensorFlow Lite和TensorFlow.js在服务器,设备和Web...快一点 它提供细粒度的控制 它与TensorFlow的其余部分很好地集成在一起 首先,需要编写一些函数来解析图像文件,并生成代表特征的张量和代表标签的张量。...下载无头模型 来自tfhub.dev的任何与Tensorflow 2兼容的图像特征矢量URL都可能对数据集很有趣。唯一的条件是确保准备的数据集中图像特征的形状与要重用的模型的预期输入形状相匹配。...它们的大小不同,具体取决于深度乘数(隐藏的卷积层中的要素数量)和输入图像的大小。

6.8K71
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于TensorFlow和Keras的图像识别

    简介 TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文的内容。...TensorFlow/Keras TensorFlow是Google Brain团队创建的一个Python开源库,它包含许多算法和模型,能够实现深度神经网络,用于图像识别/分类和自然语言处理等场景。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow的强大功能,在Python下使用无需过多的修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像的某类标签。...在图像识别的特定场景下,特征是某个对象的一组像素,如边缘和角点,网络将通过分析它们来进行模式识别。 特征识别(或特征提取)是从输入图像中拉取相关特征以便分析的过程。...需要确定所用模型的层数,层输入和输出的大小,所用激活函数的类型,以及是否使用dropout等。 如何设置参数和超参数需要大量的学习和经验的累积,本文将在示例讲解中对其进行介绍。

    2.8K20

    在玩图像分类和图像分割?来挑战基于 TensorFlow 的图像注解生成!

    原因无他:利用神经网络来生成贴合实际的图像注释,需要结合最新的计算机视觉和机器翻译技术,缺一不可。对于为输入图像生成文字注解,训练神经图像注解模型能使其成功几率最大化,并能生成新奇的图像描述。...我们使用 TensorFlow 框架来创建、训练、测试模型,因为 TensorFlow 相对容易使用,并且有不断增长的庞大用户社群。...注解生成——作为图像分类的延伸 作为一个历史悠久的 CV 任务,图像分类背后有许多强大模型。图像分类能把图像中相关联的形状、物体的视觉信息拼凑到一起,把图像放入物体类别中。...针对其他 CV 任务的机器学习模型,建立在图像分类的基础之上,比如物体识别和图像分割。它们不仅能对提供的信息进行识别,还能学习如何解读 2D 空间,调和两种理解,并决定图像中物体信息的位置分布。...给定图像和所有此前的词语,它能给出下一步某个词出现在注解中的概率。如何用它来生成新注解呢? 最简单的办法,是拿来一个输入图像,输出下一个可能性最高的词语,创建一个简单的图像注解。 ?

    98140

    Tensorflow的图像操作(四)

    接Tensorflow的图像操作(三) 3D人脸问题 人脸关键点算法已经从2D人脸渐渐发展变化为3D人脸,2D人脸是给定一副图片,找到图片中人脸关键点,这些关键点都是有着明确语义信息的,或者说都是可见的...解决思路就是数据增强,添加一些光照的变化,图像扭曲的变化,图像的旋转等等。...除了这些策略以外我们还可以去优化主干网络,比如去关注ImageNet图像挑战赛中更好的网络,能够提取出更加鲁棒的特征,对主干网络进行优化同样也能提高模型的性能。...这样就可以拿到对通道进行加权之后的特征图(就是最后那个彩色图)。在上图中我们也可以看到该特征图不同的颜色对应到不同的权值,这个流程是对通道的加权,这个加权可以理解成Attention。...而SENet ResNet则是将SENet融入到了ResNet残差的结构中,SENet添加的部分是在残差之后的单元,在这个结构单元,拿到了特征图之后,同样经过一个SENet来对特征图进行通道上的加权,最后再同原先的特征图进行相加

    60120

    TensorFlow中读取图像数据的三种方式

    Update on 2019.06.18 从tesorflow1.11之后,(大概是这个版本号),谷歌推出了tf.data模块来读取数据,甚至在tensorflow2.0中,取消了数据队列管道,所以我建议大家学习...需要读取大量图像用于训练这种情况就需要使用Tensorflow队列机制。...第一句是遍历指定目录下的文件名称,存放到一个list中。...等有时间再做一个二者比较的博客对TFRecorder解码获得图像数据其实这块和上一种方式差不多的,更重要的是怎么生成TFRecorder文件,这一部分我会补充到另一篇博客上。...从features中取出image和label的数据,这时就要用 tf.decode_raw 解码,得到的结果当然也是串行的了,所以set_shape 成一个串行的,再reshape。

    75240

    Tensorflow的图像操作(三)

    接Tensorflow的图像操作(二) 这里我们重点来看一下这个train方法,在训练的部分有一个非常重要的点就是如何去进行样本的选择。...这个时候会进行难样本的挖掘,在FaceNet中的策略,我们不能将其称为OHEM,不能称为严格意义上的难例挖掘,但有其核心思想在里面。如果要想使我们的模型训练的更好,此处可以对样本选择的部分进行优化。...nrof_batches = int(np.ceil(nrof_examples / args.batch_size)) # 对每一批次的图像来进行数据的提取和特征的提取...,这个loss就是输出结果中的每一个batch_size中的loss err, _, step, emb, lab = sess.run([loss, train_op, global_step...当然如果是不同的图像数据集分开训练和测试的话,它的模型精度不会有这么高,通常有一个专门研究跨域学习的领域叫做openset domain transfer learning,可以提升此类问题的模型精度。

    46120

    【官方教程】TensorFlow在图像识别中的应用

    你将学会如何用Python或者C++把图像分为1000个类别。我们也会讨论如何从模型中提取高层次的特征,在今后其它视觉任务中可能会用到。...我们希望这段代码能帮助你把TensorFlow融入到你自己的产品中,因此我们一步步来解读主函数: 命令行指定了文件的加载路径,以及输入图像的属性。...(output_name)); 我们接着添加更多的节点,解码数据文件得到图像内容,将整型的像素值转换为浮点型值,调整图像大小,最后对像素值做减法和除法的归一化运算。...如果你现有的产品中已经有了自己的图像处理框架,可以继续使用它,只需要保证在输入图像之前进行同样的预处理步骤。...如同 image loader,它创建一个 GraphDefBuilder,往里添加一些节点,然后运行short graph得到一对输出的tensor。本例中是输出有序的得分和得分最高结果的索引号。

    1.5K40

    Tensorflow的图像操作(二)

    接Tensorflow的图像操作 度量学习 什么是度量问题? 对于人脸匹配可以i分为1:1和1:N。对于1:1的情况,我们可以采用分类模型,也可以采用度量模型。...如果这两个1它们是同一个物体,在表示成特征向量的时候,这两个特征向量理论上是完全一样的两个特征向量,这两个特征向量的距离就是0。如果不同的两个向量,它们的距离可能就是∞。...对于1:N的问题,主要就是采用度量的方法。比方说A和B同类,A和C不同类,则A和B的相似性大于A和C的相似性。我们在这里讨论的主要就是距离,如何去衡量两个向量之间的距离,这个距离我们将它定义为相似度。...如果A和B的相似性达到了一定的程度,这时候我们就可以认为A和B是同类物体。基于这样一个前提,我们就可以去完成人脸度量以及去完成人脸识别。 距离的度量有非常多的方法,上图是几个比较具有代表性的方法。...欧式距离可以参考机器学习算法整理 中的介绍。 马氏距离可以看作是欧氏距离的一种修正,公式为 ,其中Σ是多维随机变量的协方差矩阵。

    26840

    开发 | 在玩图像分类和图像分割?来挑战基于 TensorFlow 的图像注解生成!

    原因无他:利用神经网络来生成贴合实际的图像注释,需要结合最新的计算机视觉和机器翻译技术,缺一不可。对于为输入图像生成文字注解,训练神经图像注解模型能使其成功几率最大化,并能生成新奇的图像描述。...我们使用 TensorFlow 框架来创建、训练、测试模型,因为 TensorFlow 相对容易使用,并且有不断增长的庞大用户社群。...注解生成——作为图像分类的延伸 作为一个历史悠久的 CV 任务,图像分类背后有许多强大模型。图像分类能把图像中相关联的形状、物体的视觉信息拼凑到一起,把图像放入物体类别中。...针对其他 CV 任务的机器学习模型,建立在图像分类的基础之上,比如物体识别和图像分割。它们不仅能对提供的信息进行识别,还能学习如何解读 2D 空间,调和两种理解,并决定图像中物体信息的位置分布。...给定图像和所有此前的词语,它能给出下一步某个词出现在注解中的概率。如何用它来生成新注解呢? 最简单的办法,是拿来一个输入图像,输出下一个可能性最高的词语,创建一个简单的图像注解。 ?

    84660

    TensorFlow和Pytorch中的音频增强

    来源:Deephub Imba本文约2100字,建议阅读9分钟本文将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。...对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。...因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。...尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。 在这篇文章中,将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。...我们不需要加载预先存在的数据集,而是根据需要重复 librosa 库中的一个样本: import librosa import tensorflow as tf def build_artificial_dataset

    1.1K30

    TensorFlow和Pytorch中的音频增强

    对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。...因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。...尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。 在这篇文章中,将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。...我们不需要加载预先存在的数据集,而是根据需要重复 librosa 库中的一个样本: import librosa import tensorflow as tf def build_artificial_dataset...这因为我们正在使用一个 Dataset 对象,这些代码告诉 TensorFlow 临时将张量转换为 NumPy 数组,然后再输入到数据增强的处理流程中: def apply_pipeline(y, sr

    79040

    TensorFlow进行简单的图像处理

    TensorFlow进行简单的图像处理 简单概述 作为计算机视觉开发者,使用TensorFlow进行简单的图像处理是基本技能,而TensorFlow在tf.image包中支持对图像的常见的操作包括: 亮度调整...对比度调整 饱和度调整 图像采样插值放缩 色彩空间转换 Gamma校正 标准化 图像的读入与显示我们通过OpenCV来实现,这里需要注意一点,OpenCV中图像三个通道是BGR,如果你是通过tensorflow...4.图像gamma校正 伽玛校正就是对图像的伽玛曲线进行编辑,以对图像进行非线性色调编辑的方法,检出图像信号中的深色部分和浅色部分,并使两者比例增大,从而提高图像的对比度。...最终调整之后的演示图像如下: ? 6.图像标准化 这个在tensorflow中对图像数据训练之前,经常会进行此步操作,它跟归一化是有区别的。...小结 tensorflow中还提供一些其他的图像操作相关API,比如裁剪、填充、随机调整亮度、对比度等,还有非最大信号压制等操作,感兴趣的可以自己进一步学习。

    2K80

    tensorflow的图像预处理函数

    一、tensorflow图像处理函数图像编码处理一张RGB彩色模型的图像可以看成一个三维矩阵,矩阵中的每一个数表示了图像上不同的位置,不同颜色的亮度。...然而图像在存储时并不是直接记录这些矩阵中的数字,而是记录经过压缩编码之后的结果。所以要将一张图片还原成一个三维矩阵,需要解码过程。tensorflow提供了jpeg和png格式图像的编码/解码的函数。...以下代码示范了如何使用tensorflow中对jpeg格式图像进行编码/解码。...tensorflow也提供了tf.image.crop_to_bounding_box函数和tf.image.pad_to_bounding_box函数来剪切或者填充给定区域的图像。...)除了调整图像的亮度、对比度、饱和度和色相,tensorflow还提供API来完成图像标准化的操作。

    2.5K30

    使用TensorFlow和DLTK进行生物医学图像分析的介绍

    我们使用最初为脑成像开发的NifTI(或.nii格式),但广泛用于DLTK和本教程中的大多数其他卷图像。这种格式和其他格式保存的是重建图像容器并将其定位在物理空间中所必需的信息。...强度和空间增强技术的例子 关于扩充和数据I / O的重要说明:根据需要或有用的扩充,某些操作仅在python中可用(例如随机变形),这意味着如果使用使用原始TensorFlow的读取方法(即TFRecords...多序列图像输入,目标标签和预测的Tensorboard可视化 该图像分割应用程序学习在小的(N = 5)MRBrainS挑战数据集上预测多序列MR图像(T1加权,T1反转恢复和T2 FLAIR)中的脑组织和白质病变...加权脑MR图像的年龄回归和性别分类 ?...输入T1加权脑MR图像用于回归和分类 采用可扩展3D ResNet架构的两个类似的应用程序,学习从IXI数据库的T1加权脑MR图像中预测受试者的年龄(回归)或性别(分类)。

    3.1K40

    基于tensorflow实现图像风格的变换

    Ecker, 和 Matthias Bethge 等人的论文“A Neural Algorithm of Artistic Style”开创了图像艺术风格转换的途径,自此之后,利用深度学习相关模型和处理方法...,可以实现用计算机代替传世画家的野心。...在量化(数学)与风格(艺术)之间,上面那篇论文中提出一种算法,用卷积神经网络将一幅图像的内容与另一幅图像的风格进行组合。...感觉看了挺好玩的,于是也进行测试了下,即利用Vgg19的模型作为训练数据模型,然后实现对任意一张图片进行切换。设置默认的风格切换比例为0.7。 (1) 风格图片(选用论文中的实验用图) ?...(2)测试例子二: 郑州的大玉米 ? 转换后的效果如下所示: ? 这个示例还是非常赞的,通过不同风格的照片还可以实现不用画派的切换。

    1K80

    基于Tensorflow的Quick Draw图像分类

    基于Tensorflow的Quick Draw图像分类 1、数据集介绍 2、Quick Draw图像分类 2.1 数据获取 2.2 设置环境 2.3 数据预处理 2.4 模型创建 2.5 模型训练和测试...2.6 模型保存、加载和重新测试 1、数据集介绍   Google的“Quick Draw”数据集是一个开源的数据集。...该数据集共有345个类别,共5000万张图片,所有这些图片都是由参与挑战的1500万名用户在20s或者更短的时间内绘制完成。   ...这里将在10个类别的100万张图片上进行学习,为了测试模型的辨别力,特意选择了一些比较相似的图像 2、Quick Draw图像分类 2.1 数据获取   从Google 下载数据,并将其保存至名为"data_files..."的空目录下面。

    39920

    水果图像识别:基于 Arduino 和 TensorFlow Lite Micro

    特邀博文 / Dominic Pajak 和 Sandeep Mistry,来自 Arduino 团队 Arduino 肩负着让任何人均可轻松使用机器学习的使命。...在本文中,我们将带您了解一个更为简单的端到端教程:使用 TensorFlow Lite Micro 库,以及 Arduino Nano 33 BLE Sense 的色度计和近接感测器传感器来分类对象。...运行 TensorFlow Lite Micro 的 Arduino BLE 33 Nano Sense Tiny ML 的理念是在设备上用较少的资源(更小巧的外形、更少的能耗和更低成本的芯片)完成更多的工作...此处所涉内容包括数据采集、训练和分类器部署。我们介绍的是一个演示应用,您可连接一个外部摄像头,在此基础上进行改进和完善。我们希望您能了解我们提供的工具能够实现什么,这里只是为您提供了一个起点。...page=1 (请注意,您也可以使用 Arduino IDE 桌面应用,相关设置说明可以在之前的教程中找到) 拍摄训练数据 现在,我们将采集用于在 TensorFlow 中训练模型所需的数据。

    2.2K20
    领券