本文简单介绍梯度裁剪(gradient clipping)的方法及其作用,不管在 RNN 或者在其他网络都是可以使用的,比如博主最最近训练的 DNN 网络中就在用。...梯度裁剪一般用于解决 梯度爆炸(gradient explosion) 问题,而梯度爆炸问题在训练 RNN 过程中出现得尤为频繁,所以训练 RNN 基本都需要带上这个参数。... 的值,若 LNorm 的梯度乘上这个缩放因子。...关于 gradient clipping 的作用可更直观地参考下面的图,没有 gradient clipping 时,若梯度过大优化算法会越过最优点。?...而在一些的框架中,设置 gradient clipping 往往也是在 Optimizer 中设置,如 tensorflow 中设置如下optimizer = tf.train.AdamOptimizer
这一观察促使研究者进一步检查策略梯度算法及其与底层框架之间的关系。研究者对这些算法在实践中展示的关键强化学习基元进行了细致地检查。...图 2:梯度估计的经验方差在 MuJoCo Humanoid 任务中可作为状态-动作对关于数量的函数,x 轴为状态-动作对,y 轴是梯度估计的经验方差。 ?...图 3:MuJoCo Humanoid 任务中梯度估计向「真正」期望梯度的收敛情况。 价值预测 ?...这些现象促使我们发问:建模真价值函数的失败是在所难免的吗?价值网络在策略梯度方法中的真正作用是什么? 最优化 Landscape。...事实上,在策略梯度方法使用的采样方案中,真奖励的 Landscape 有噪声,且代理奖励函数通常具备误导性。
TensorFlow是一个用于人工智能的开源神器,是一个采用数据流图(data flow graphs)用于数值计算的开源软件库。...数据流图使用节点(nodes)和边线(edges)的有向图来描述数学计算,图中的节点表示数学操作,也可以表示数据输入的起点或者数据输出的终点,而边线表示在节点之间的输入/输出关系,用来运输大小可动态调整的多维数据数组...TensorFlow可以在普通计算机、服务器和移动设备的CPU和GPU上展开计算,具有很强的可移植性,并且支持C++、Python等多种语言。...import tensorflow as tf import numpy as np import time #使用 NumPy 生成随机数据, 总共 2行100列个点. x_data = np.float32...构建训练模型,matmul为矩阵乘法运算 y = tf.matmul(W, x_data) + b #最小均方差 loss = tf.reduce_mean(tf.square(y - y_data)) #使用梯度下降算法进行优化求解
重现梯度消失 为了凸显这个问题,我们需要一个特别的网络架构,抽出网络中由蓝色神经元构成的路径,形成一个每层只有一个神经元的多层网络,如下图所示: ?...这个形式可以清晰的反应出在反向传播过程中,靠后的层如何影响靠前的层:神经元梯度会受到其后每层神经元的累积乘性影响,越靠近输出层的,乘性因子越多。...梯度爆炸 梯度爆炸问题,效果与梯度消失恰恰相反——越靠前的隐藏层的梯度越大。 一个简单的解释是:训练过程中随着权重w的不断更新,分布不再服从初始化时的N(0, 1)。...总的来说,不管是梯度消失还是梯度爆炸,深度网络中靠近输入层的神经元,其梯度的内在结构“不稳定”是学习困难的根本原因。...如下式所示,以一个输出层神经元为例,如果σ'(z) → 0,在权重w上的梯度也趋于0。 ? 此外,从上一节中Sigmoid导数曲线可以看出,其最大值也不过0.25,使得梯度在反向传播过程中衰减较快。
iii)梯度在大脑动力学和认知中的作用,以及(iv)梯度作为框架来分析和概念化大脑进化和发展的效用。...其中包括推导梯度的方法,使它们彼此对齐,分析梯度衍生特征,并评估它们与神经和非神经空间地图的关联。本期特刊中的一系列论文为日益增长的梯度分析库提供了有用的补充。...特刊包括几篇论文,它们为连续表征在表征皮层区域和网络中的效用提供了重要的原理证明。在全脑范围内,梯度似乎映射出分布式功能系统之间的全局关系,以及特定系统地图的空间特征如何位于更广泛的组织模式中。...在一些研究中,功能梯度描述的轴被用来描述任务诱发的激活和失活模式。...梯度为结构-功能对应的分析提供了一个框架,而且似乎在不同的模态中梯度具有高度的收敛性然而,在不同形态的梯度中似乎也有一些明显的差异。
,因为PyTorch中的loss.backward()执行的是梯度累加的操作,所以当你调用4次loss.backward()后,这4个mini-batch的梯度都会累加起来。...但是,我们需要的是一个平均的梯度,或者说平均的损失,所以我们应该将每次计算得到的loss除以accum_steps accum_steps = 4 for idx, (x, y) in enumerate...mini-batch的梯度后不清零,而是做梯度的累加,当累加到一定的次数之后再更新网络参数,然后将梯度清零。...通过这种延迟更新的手段,可以实现与采用大batch_size相近的效果 References pytorch中的梯度累加(Gradient Accumulation) Gradient Accumulation...in PyTorch PyTorch中在反向传播前为什么要手动将梯度清零?
OpenCV在Core模块中支持多种图形绘制与填充,方便开发者在图像对象识别与检测之后通过特定的图形轮廓加以显式表示。常见的几何形状包括线、矩形、圆形、椭圆,此外还支持文字显示。...,Scalar的向量与img的通道数目一直。...参数color 表示绘制使用的颜色,Scalar的向量与img的通道数目一直。...绘制与填充任意闭合区域 通过定义好的点,绘制直线,形成闭合区域,可以实现绘制任意形状闭合区域,同时通过OpenCV中泛洪填充API可以实现对任意闭合区域的颜色填充。演示代码如下: ?...完整的代码演示效果如下: ? 其中用的泛洪填充算法,小编打算另外一篇给大家专门扒一下这个算法本身,以及OpenCV中的源代码实现解析。
二维图形的绘制 因MATLAB的图形是通过描点、连线来实现的,故在绘制简单平面图形时需要提供图形上的一系列点的横纵坐标,然后将这些点链接起来。...②plot是针对向量或矩阵的列来绘制曲线的,也就是说,使用plot之前必须首先定义好曲线上每一点的x坐标和y坐标。 ③在上述的格式中,x和y都可以是表达式。...wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1] 三维图形的绘制 在MATLAB中绘制三维曲线的命令为 plot3(x,y,z,’S’) 其中x,y,z分别为点的横、纵及竖坐标...在MATLAB中绘制三维箭头函数 quiver3(x,y,z,u,v,w) 例 试绘制 的图形。 解 在命令窗口中录入如下命令,即可获得如图所示的图形。...(3) 图形中增加修饰 为了在图形中增加文字来实现对图形的修饰,可通过gtext(‘string’)来实现对图形的修饰。
这一次我们会讲到 Tensorflow 中的 Session, Session 是 Tensorflow 为了控制,和输出文件的执行的语句....运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分.首先,我们这次需要加载 Tensorflow ,然后建立两个 matrix ,输出两个 matrix 矩阵相乘的结果...import tensorflow as tf# create two matrixesmatrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2],...[2]])product = tf.matmul(matrix1,matrix2)因为product不是直接计算的步骤, 所以我们会要使用Session来激活...method 2with tf.Session() as sess: result2 = sess.run(product) print(result2)# [[12]]以上就是我们今天所学的两种
简单运用这一次我们会讲到 Tensorflow 中的 placeholder , placeholder 是 Tensorflow 中的占位符,暂时储存变量.Tensorflow 如果想要从外部传入data..., 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).import tensorflow as tf#在...Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式input1 = tf.placeholder(tf.float32)input2 = tf.placeholder...tf.float32)# mul = multiply 是将input1和input2 做乘法运算,并输出为 output ouput = tf.multiply(input1, input2)接下来, 传值的工作交给了...sess.run(), 需要传入的值放在了feed_dict={}并一一对应每一个input.placeholder与feed_dict={}是绑定在一起出现的。
1 引言 在网页的布局中,往往会涉及到一些动画效 果的设置,而这些动画的效果通常会有图形的变换。 2 问题 Html中图形的变换。 3 方法 首先需要设计一个div,然后设置图形的基本形状以及大小。...然后通过设置translate(位移)、rotate(旋转)、scale(缩放)、skew(斜切)来设置图形的一些变换。 4 实验结果与讨论 代码清单 <!...45deg) scale(0.5) skew(40deg,40deg); } 5 结语 针对html中图形基本变换的问题...,提出通过方法,通过设置图形translate(位移)、rotate(旋转)、scale(缩放)、skew(斜切)实验,证明该方法是有效的。...本文中涉及的图形变换以及位置变换相对简单,在之后的实验中可以练习一些更为复杂的变换。
机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法(Gradient Descent)处理,那么搞懂什么是梯度,什么是梯度下降法就非常重要。...3.png 在前面导数和偏导数的定义中,均是沿坐标轴讨论函数的变化率。那么当我们讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值 四、梯度 定义: ?...函数在某一点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。...这里注意三点: 1)梯度是一个向量,即有方向有大小; 2)梯度的方向是最大方向导数的方向; 3)梯度的值是最大方向导数的值。...五、梯度下降法 既然在变量空间的某一点处,函数沿梯度方向具有最大的变化率,那么在优化目标函数的时候,自然是沿着负梯度方向去减小函数值,以此达到我们的优化目标。 如何沿着负梯度方向减小函数值呢?
上一主题 《TensorFlow从0到1》介绍了人工神经网络的基本概念与其TensorFlow实现,主要基于浅层网络架构,即只包含一个隐藏层的全连接(FC,Full Connected)网络。...当预设了它的架构,并对其进行初始化后,剩下的就是喂数据给它,至于网络中数以万计的权重和偏置如何调整,又将止步何处,整个动态优化的过程人类完全插不上手。...实际情况中,不同的数据和目的,会训练出不同的网络,而每一层意义也会大相径庭。基于这种启发,研究者已经发展出逐层的可视化分析手段,尝试去理解机器学习的机理。...如果我们绘制一个图形来表示概念是如何建立在其他概念之上,这个图形会很深,具有很多层。基于这个原因,我们称这种方法为AI深度学习。...可见网络越深,靠近输入层的神经元的梯度越小,几近消失,神经元也停止学习。 ReLU是救星吗? ?
错误原因: tensorflow版本的问题: tensorflow1.0及以后api定义:(数字在后,tensors在前) tf.stack(tensors, axis=axis) For example...shape [2, 3] tf.shape(tf.concat([t3, t4], 0)) ==> [4, 3] tf.shape(tf.concat([t3, t4], 1)) ==> [2, 6] tensorflow
处理图形中的乱码 设置为中文后,zabbix图形的中文文字会显示小方框 这是因为在zabbix的字体库中没有中文字体,需要从windows上借用一个过来 vim /usr/share/zabbix/include...”(其实就是那个仿宋简体),先把它复制到桌面上,然后上传到linux的/usr/share/zabbix/fonts/,并且改名为graphfont.ttf 处理图形中的乱码 首先把han模板连接到hf...然后点击查看 图形 ? 选择其中一张图,点开查看,选择 预览 ,会看到本来是中文显示的,结果显示成小方块 ?...调用的是graphfont.ttf,而graphfont.ttf它指向了SIMFANG.TTF 这时在浏览器上刷新下,会看到显示正常,这样就能解决图形里面的小方块 ?...还能看到CPU load一直为0,因为已经有数据产生了 在检测中,有一个最新数据,在这里主机可以选择 主机hf-02 ,点击应用 ? 会看到监控的项目都有数据的,也可以选择 右侧的图形查看 ? ?
各种不同的优化器本小节,我们会讲到Tensorflow里面的优化器。Tensorflow 中的优化器会有很多不同的种类。最基本, 也是最常用的一种就是GradientDescentOptimizer。...在 Tensofllow官网输入optimizer可以看到Tensorflow提供了多种优化器:图片TensorFlow官网提供的教程:TensorFlow Addons 优化器:LazyAdamhttps...://tensorflow.google.cn/addons/tutorials/optimizers_lazyadam?
Tensorflow 现在将 Dataset 作为首选的数据读取手段,而 Iterator 是 Dataset 中最重要的概念。...在 Tensorflow 的程序代码中,正是通过 Iterator 这根水管,才可以源源不断地从 Dataset 中取出数据。 但为了应付多变的环境,水管也需要变化,Iterator 也有许多种类。...Tensorflow 针对这种情况,提供了一个可以重新初始化的 Iterator,它的用法相对而言,比较复杂,但好在不是很难理解。...不同的 Dataset 用不同的 Iterator,然后利用 feeding 机制,动态决定,听起来就很棒,不是吗?...3、可重新初始化的 Iterator,它可以对接不同的 Dataset,也就是可以从不同的 Dataset 中读取数据。
概要 本篇介绍下图形学中涉及的线性代数,通过本篇的学习,可以为后续学习图形的各种变换打下坚实的基础。为了避免单纯介绍数学带来的抽象,本篇会以图形的方式来解释数学。那现在就开始吧。...特征值和特征向量 矩阵A表示一个变换,可能是旋转,平移,缩放中的一个或几个,如果对某个向量按照A变换后,结果方向没变,只是进行了缩放,那么这个向量就是特征向量,对应的缩放因子就是特征值。...反射 反射其实就是把x或者y坐标取反就行: image.png 变形的组合和分解 图形的变形都可以看成是上述几种变形方式的组合,而某一个图形的变形也可以拆成几个基本变形的组合。...R,这两个向量是对应的行向量 将该向量乘以矩阵R,这时候就可以将该向量旋转到标准坐标系的某个轴上 执行旋转 4.乘以R的装置,就可以再旋转第一步生成的坐标系中 具体公式如下,这儿是将旋转向量旋转到了...坐标系变换 在图形变换中,会涉及到多个坐标系,比如基于某个物体的局部坐标系,基于整个空间的整体坐标系,还有基于Camera的观察坐标系,那某个坐标系的点在另外一个坐标系中如何表示呢?
简单运用这节课我们学习如何在 Tensorflow 中使用 Variable .在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。...定义语法: state = tf.Variable()import tensorflow as tfstate = tf.Variable(0, name='counter')# 定义常量 oneone...此步并没有直接计算)new_value = tf.add(state, one)# 将 State 更新成 new_valueupdate = tf.assign(state, new_value)如果你在 Tensorflow...中设定了变量,那么初始化变量是最重要的!!...一定要把 sess 的指针指向 state 再进行 print 才能得到想要的结果!以上就是我们今天所学的 Variable 打开模式。
TensorFlow提供Variable Scope机制来控制变量的作用域,一定程度上类似于C++中的namespace,使得相同名称的变量可以同时存在。...变量作用域相关的函数: tf.variable_scope() tf.name_scope() 变量生成相关的函数 tf.get_variable...=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None) 使用示例 如下所示,conv_block中创建了...变量的复用机制 当需要复用变量时,调用函数reuse_variables()。...; tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量。
领取专属 10元无门槛券
手把手带您无忧上云