首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras多GPU训练

    Keras 2.X版本后可以很方便的支持使用多GPU进行训练了,使用多GPU可以提高我们的训练过程,比如加速和解决内存不足问题。 多GPU其实分为两种使用情况:数据并行和设备并行。...这里就给出数据并行的多GPU训练示例: from keras.utils.training_utils import multi_gpu_model #导入keras多GPU函数 model =...3和5的两个GPU来跑训练。...Originally defined at: 我使用单GPU训练的时候没有问题,改成多GPU后出现这个问题。这个问题好解决,将Tensorflow升级到1.4即可。...还有其他的改法可以参考这篇博客:[Keras] 使用多 gpu 并行训练并使用 ModelCheckpoint() 可能遇到的问题,思路都是一样的,只是改法不同。 这样就能够成功使用多GPU训练啦。

    1.3K30

    Tensorflow多GPU使用详解

    磐创AI 专注分享原创AI技术文章 翻译 | fendouai 编辑 | 磐石 【磐创AI导读】:本文编译自tensorflow官方网站,详细介绍了Tensorflow中多GPU的使用。...目录: 介绍 记录设备状态 手动分配状态 允许GPU内存增长 在多GPU系统是使用单个GPU 使用多个 GPU 一. 介绍 在一个典型的系统中,有多个计算设备。...在 TensorFlow 中支持的设备类型包括 CPU 和 GPU。...如果要真正限制 TensorFlow 进程可用的GPU内存量,这非常有用。 五. 在多GPU系统上使用单个GPU 如果您的系统中有多个GPU,则默认情况下将选择具有最低ID的GPU。...使用多个 GPU 如果您想要在多个 GPU 上运行 TensorFlow ,则可以采用多塔式方式构建模型,其中每个塔都分配有不同的 GPU。

    5.6K40

    2.3 tensorflow单机多GPU并行

    多GPU并行 有时候想要把所有GPU用在同一个模型里,以节省训练时间,方便快速查看结果。这个时候需要用到GPU并行。 gpu并行有模型并行和数据并行,又分为同步和异步模式。...单机多卡一般采用同步的数据并行模式:不同gpu共享变量,不同gpu运算不同数据的loss和梯度后在cpu里平均后更新到被训练参数。...tensorflow中的GPU并行策略是(下图,全网都是这个图): 每个GPU中都存有一个模型,但共享所有需要训练的变量。...* gpu_nums,例如单gpu的为32,有4块gpu,则总的batchsize为32*4=128.在代码中也很清楚的显示出了tensorflow多gpu并行的原理。...注意事项 多gpu并行训练速度会提升,但不是完全线性的,因为gpu之间的通信需要时间。

    4.3K20

    转载|在TensorFlow和PaddleFluid中使用多块GPU卡进行训练

    为 PaddleFluid 和 TensorFlow 模型添加上多 GPU 卡运行的支持。 2....请注意,这一篇我们主要关于 如何利用多 GPU 卡进行训练,请尽量在有多 块 GPU 卡的机器上运行本节示例。...计算参数更新量,更新参数 | to 1 PaddleFluid使用多GPU卡进行训练 在 PaddleFluid 中使用多个 GPU 卡以数据并行的方式训练需要引入 parallel_do...中使用多GPU卡进行训练 在 TensorFlow 中,通过调用 with tf.device() 创建一段 device context,在这段 context 中定义所需的计算,那么这 些计算将运行在指定的设备上...值得注意的是,不论是 PaddleFluid 还是 TensorFlow 都还有其他多种利用多计算设备提高训练并行度的方法。请大家随时关注官方的最新文档。 参考文献 [1].

    1.2K30

    Pytorch中多GPU训练指北

    前言 在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情。...Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意的地方。...使用方式 使用多卡训练的方式有很多,当然前提是我们的设备中存在两个及以上的GPU:使用命令nvidia-smi查看当前Ubuntu平台的GPU数量(Windows平台类似),其中每个GPU被编上了序号:...注意点 多GPU固然可以提升我们训练的速度,但弊端还有有一些的,有几个我们需要注意的点: 多个GPU的数量尽量为偶数,奇数的GPU有可能会出现中断的情况 选取与GPU数量相适配的数据集,多显卡对于比较小的数据集来说反而不如单个显卡训练的效果好...多GPU训练的时候注意机器的内存是否足够(一般为使用显卡显存x2),如果不够,建议关闭pin_memory(锁页内存)选项。

    1.7K50

    多GPU,具有Tensorflow的多进程

    建议先阅读TensorFlow关于GPU 的官方教程。...https://www.tensorflow.org/guide/using_gpu 一个过程,很多GPU 这是最常见的情况,因为大多数深度学习社区正在进行监督学习,具有大数据集(图像,文本,声音......https://jhui.github.io/2017/03/07/TensorFlow-GPU/ 多个进程,许多GPU 这是本文的真正意义所在。...GPU分配和内存 默认情况下,Tensorflow会为模型选择第一个可用GPU,并在设备上为进程分配完整内存。不想要两个!希望工作进程共享一个模型,但是为自己的用法分配自己的GPU集部分。...但内存有限,所以必须手动进行非常严格的优化......训练由主进程完成,需要大量内存,因此为他分配了几乎一整个GPU。

    2.2K20

    Tensorflow入门教程(九)——Tensorflow数据并行多GPU处理

    这一篇我会说Tensorflow如何数据并行多GPU处理。 如果我们用C++编写程序只能应用在单个CPU核心上,当需要并行运行在多个GPU上时,我们需要从头开始重新编写程序。...但是Tensorflow并非如此。因其具有符号性,Tensorflow可以隐藏所有这些复杂性,可轻松地将程序扩展到多个CPU和GPU。 例如在CPU上对两个向量相加示例。 ?...我们想要在多个GPU上训练神经网络,在训练期间,我们不仅需要计算正向传播,还需要计算反向传播(梯度),但是我们如何并行梯度计算呢?事实证明,这很容易,我们对每个GPU上算出的梯度求平均。...上面就是用2块GPU并行训练来拟合一元二次函数。...注意:当用多块GPU时,模型的权重参数是被每个GPU同时共享的,所以在定义的时候我们需要使用tf.get_variable(),它和其他定义方式区别,我在之前文章里有讲解过,在这里我就不多说了。

    1.5K30

    tensorflow object detection API使用之GPU训练实现宠物识别

    +cuDNN7.0 下面就说说我是一步一步怎么做的,这个其中CPU训练与GPU训练速度相差很大,另外就是GPU训练时候经常遇到OOM问题,导致训练会停下来。...GPU训练时候发生。..._pets.config --train_dir=D:/tensorflow/my_train/models/train –alsologtostderr 发现GPU上的训练可以正常跑啦,有图为证: ?...但是千万别高兴的太早,以为GPU训练对显存与内存使用是基于贪心算法,它会一直尝试获取更多内存,大概训练了100左右step就会爆出如下的错误: tensorflow.python.framework.errors_impl.InternalError...网络使用GPU训练时,一般当GPU显存被占满的时候会出现这个错误 解决的方法,就是在训练命令执行之前,首先执行下面的命令行: Windows SET CUDA_VISIBLE_DEVICES=0 Linux

    2.4K00

    PyTorch多GPU并行训练方法及问题整理

    我一般都是在程序开始的时候就设定好这个参数, 之后如何将模型加载到多GPU上面呢?..., 然后才能使用DistributedDataParallel进行分发, 之后的使用和DataParallel就基本一样了 2.多机多gpu训练 在单机多gpu可以满足的情况下, 绝对不建议使用多机多gpu...我看一个github上面的人说在单机8显卡可以满足的情况下, 最好不要进行多机多卡训练。 建议看这两份代码, 实际运行一下, 才会真的理解怎么使用。...在进行多机多gpu进行训练的时候, 需要先使用torch.distributed.init_process_group()进行初始化. torch.distributed.init_process_group...使用这些的意图是, 让不同节点的机器加载自己本地的数据进行训练, 也就是说进行多机多卡训练的时候, 不再是从主节点分发数据到各个从节点, 而是各个从节点自己从自己的硬盘上读取数据.

    14.8K30

    TensorFlow在美团外卖推荐场景的GPU训练优化实践

    在系统实施路径上,考虑到业务预期交付时间、实施风险,我们并没有一步到位落地Booster的多机多卡版本,而是第一版先落地了GPU单机多卡版本,本文重点介绍的也是单机多卡的工作。...计算模块:每张GPU卡启动一个TensorFlow训练进程执行训练。...: 图12 CPU/GPU训练吞吐对比 可以看到,我们优化后的TensorFlow GPU架构训练吞吐,是原生TensorFlow GPU的3倍以上,是优化后TensorFlow CPU场景的4倍以上...5.2 训练效果 相较PS/Worker异步模式的CPU训练,单机多卡训练时卡间是全同步的,因而避免了异步训练梯度更新延迟对训练效果的影响。...同时为了更广泛的支持美团内的业务模型,Booster的下一个版本也会支持更大的模型,以及多机多卡的GPU训练。

    1.2K20

    多视图聚类-使用GPU云服务器训练

    2、云服务器灵活性好,价格低 3、云服务器操作配置简单 4、发布网站让别人访问 二、训练使用GPU云服务器 1、win+r打开cmd a.png Snipaste_2022-04-20_19-06-34...三、使用的训练设置 在使用服务器训练深度学习的模型时,常常由于用电脑训练CNN时遇到了性能瓶颈(显存不够),就会发出错误报告,这样训练也就不会正常开始,当然也可以调整自己的batch_size的大小,从而对自己电脑的...GPU带来小的内容消耗,虽然这样可以进行训练,但是训练出来的模型一定效果不太理想。...这个时候就可以使用GPU云服务器进行训练,毕竟云服务器上的显卡内容比自己电脑上的要大很多。训练也快,训练出来的模型效果也好,很理想化。 下面是使用GPU云服务器进行的训练截图。...Snipaste_2022-04-20_19-29-42.png 可以看到时间会很短,比自己电脑训练所用的时间的一半不到,所以使用云服务器还是一个不错的选择。

    1.3K40
    领券