首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Brain Stimulation: ​大脑电生理记录和刺激工具包(BEST)

非侵入性脑刺激(NIBS)实验涉及许多重复的过程,这些过程在该领域的研究中的还不够标准化。考虑到实验设计以及研究人员经验的多样性,需要一个自动化但是灵活的数据收集和分析工具来提高NIBS实验的客观性、可信度和可重复性。本研究开发的BEST工具包是一个基于matlab的开源软件,具有图形化的用户界面,允许用户进行设计、运行和分享可自由配置的涉及多种技术的方案(protocols)(包括经颅磁刺激、电刺激和超声刺激(TMS、tES、TUS))、多个session的NIBS研究。BEST工具包可以兼容各种记录和刺激设备,可以通过对肌电和脑电的数据进行分析,来实现刺激参数实时设置,以促进闭环方案和实时应用。目前该工具包的功能不断扩展,已有的功能包括TMS运动热点搜索、阈值估计、运动诱发电位(MEP)和TMS诱发脑电电位(TEP)的测量、剂量反应曲线、配对脉冲和双线圈的TMS、rTMS干预。

02

Neuron:背侧流中θ振荡的选择性夹带可提高听觉工作记忆表现

已经证实背侧流(Dorsal Stream)在工作记忆中操作听觉信息的作用。然而,该网络中的振荡动力学及其与行为的因果关系仍未明确。通过同步使用MEG/EEG,我们发现在需要比较两种不同时间顺序模式差异的任务中,背侧流中θ振荡可以预测被试的操作能力。我们利用θ节律性TMS与EEG结合的方法,在两种刺激之间的静息态间隔内,对MEG识别目标(左侧顶内沟)进行脑振荡与行为之间的因果关系研究。节律性TMS引发了θ振荡并提高了被试的准确性。TMS诱发的振荡夹带随着行为增强而增加,而且这两种增强都随着被试的基线水平而产生变化。这些结果在旋律对比控制任务(melody-comparison control task)中没有观察到,在非节律性TMS中也没有观察到。这些数据表明,背侧流中的θ活动与记忆操作有因果关系。本文发表在Neuron杂志。

02

BP综述:闭环脑刺激

就像美存在于观察者的眼中一样,刺激对大脑的影响不仅仅是由刺激的性质决定的,而是由在那一刻接受刺激的大脑的性质决定的。在过去的几十年里,治疗性脑刺激通常应用开环固定方案,而在很大程度上忽略了这一原则。只有最近的神经技术进步使我们能够使用应用于脑电图时间序列数据的前馈算法,在毫秒范围内以足够的时间精度预测大脑的性质(即下一个实例的脑电生理状态)。只要目标脑区处于预先设定的兴奋性或连接状态,就可以进行专门的刺激。临床前研究表明,在特定的大脑状态(例如高兴奋状态)期间而不是在其他状态期间进行的重复刺激会导致受刺激环路的持久修饰(例如长时程增强)。在本研究中,我们调查了使用脑电图通知的经颅磁刺激,在人类皮层的系统水平上这也是可能的证据。我们批判性地讨论了开发脑状态依赖性刺激,从而比传统固定方案更有效地长期修饰病理性脑网络(例如重度抑郁症)的机会和困难。同样基于实时脑电图的经颅磁刺激技术将允许通过记录刺激的效果来闭合环路。这一信息可能使刺激方案适应,使治疗反应最大化。通过这种方式,大脑状态控制大脑刺激,从而引入了从开环刺激到闭环刺激的范式转变。

01

Trends in Neurosciences:基于信息的无创经颅脑刺激方法

认知神经科学的进展依赖于方法学的发展,以增加有关脑功能知识的特异性。例如,在功能神经成像领域,当前的趋势是研究大脑区域所携带的信息类型,而不是简单地比较任务操作所引起的激活水平。在这种情况下,非侵入性经颅脑刺激 (noninvasive transcranial brain stimulation, NTBS) 在认知功能研究中的传统应用可能显得粗糙和过时。然而,在其众多参数中,通过与行为操作相结合,NTBS方案可以达到成像技术的特异性。在本文中,我们回顾了在基础科学和临床环境中实现这一目标的不同范例,并遵循基于信息的方法的一般原理。本文发表在Trends in Neurosciences杂志。

02

治疗性经颅磁刺激后大规模脑电图神经网络的变化

背景:经颅磁刺激(TMS)是一种有效的治疗难治性抑郁症的治疗方法。TMS可能诱发与抑郁症相关的异常回路的功能连接改变。脑电图(EEG)“微观状态”是指假设代表大规模静息网络的地形图。典型的微状态最近被提出作为重度抑郁症(MDD)的标志物,但目前尚不清楚它们在经颅磁刺激后是否会改变或如何改变。方法:对49例MDD患者在基线时和每日经颅磁刺激6周后进行静息脑电图检测。采用极性不敏感的修正k-means聚类方法将脑电图分割为组成的微观状态。微观状态通过sLORETA进行定位。重复测量混合模型检验了被试内随时间的差异,t检验比较了TMS应答组和无应答组之间的微观状态特征。结果:从所有可用的脑电图数据中鉴定出6个微观状态(MS-1 - MS-6)。对TMS的临床反应与MS-2特征的增加以及MS-3指标的降低相关。无反应者在微状态中没有显示出明显的变化。在TMS治疗过程中,MS-2(增加)和MS-3(减少)的发生率和覆盖率的变化与症状的变化幅度相关。结论:本研究确定了与治疗性经颅磁刺激作用相关的脑电图微观状态。结果表明,脑电图可观察到静息网络的特异性改变。

03

BP综述|个性化和基于回路的经颅磁刺激:证据、争议和机遇

绘制脑连接图的神经影像学方法的发展改变了我们对精神疾病、脑刺激的分布效应以及如何最好地利用经颅磁刺激靶向和改善精神症状的理解。与此同时,神经影像学研究表明,像前额叶皮层这样的高阶脑区(代表了精神疾病最常见的脑刺激靶点)在大脑连接方面表现出了一些最高水平的个体差异。这些发现为基于个体特异性脑网络结构的个体化靶点选择提供了理论基础。最近的进展使确定可重复的个体化靶点成为可能,其精度为毫米,采集时间为临床可掌握。这些进展使空间个性化经颅磁刺激靶向的潜在优势得以评估并转化为基础和临床应用。在这篇综述中,我们概述了目标位点个性化的动机、初步支持(主要在抑郁症中)、来自其他脑刺激模式的聚合证据,以及抑郁症和前额叶皮层之外的普遍适用性。最后,我们将详细介绍方法学建议、争议和值得注意的替代方案。总体而言,虽然这一研究领域看起来很有前景,但个性化靶向的价值仍不清楚,使用经过验证的方法学进行专门的大型前瞻性随机临床试验是至关重要的。

01

BP综述|贯穿一生的TMS:发育和退行性过程的影响

经颅磁刺激(Transcranial magnetic stimulation, TMS)已成为一种重要的无创性技术,用于研究整个生命周期的皮质兴奋性和可塑性,为神经发育和神经变性过程提供了有价值的见解。在这篇综述中,我们探讨了TMS的应用对我们理解正常发育、健康老龄化、神经发育障碍和成人发病的神经退行性疾病的影响。通过介绍TMS测量中关键的发育里程碑和年龄相关的变化,我们为理解神经递质系统的成熟和一生中认知功能的轨迹提供了基础。在此基础上,本文深入探讨了神经发育障碍的病理生理机制,包括自闭症谱系障碍、注意缺陷多动障碍、Tourette综合征和青少年抑郁症。本文重点介绍了近年来TMS在神经递质环路改变和皮质可塑性障碍方面的研究结果,并强调了TMS作为一种有价值的工具来揭示潜在的机制和指导未来的治疗干预。我们也回顾了TMS在研究和治疗最常见的成人神经退行性疾病和迟发性抑郁症中的新作用。通过概述无创脑刺激技术在这些疾病中的治疗应用,我们讨论了越来越多的证据支持其作为症状管理和潜在减缓疾病进展的治疗工具。从TMS研究中获得的见解促进了我们对健康和疾病状态下潜在机制的理解,最终为开发更有针对性的诊断和治疗策略提供了信息。

00

通过脑电图/脑磁图观察到的大脑活动来指导经颅脑刺激

非侵入性经颅脑刺激(NTBS)技术的应用范围广泛,但也存在诸多局限性,主要问题是干预的特异性、效应大小不一。这些局限性促使最近的研究将NTBS与正在进行的大脑活动的结合。正在进行的神经元活动的时间模式,特别是大脑振荡及其波动,可以用脑电或脑磁图(EEG/MEG)跟踪,以指导NTBS的时间和刺激设置。在线脑电图/脑磁图已用于指导NTBS的时机(即刺激时间):通过考虑大脑振荡活动的瞬时相位或功率,NTBS可以与兴奋性状态的波动对齐。此外,干预前的离线脑电图/脑磁图记录可以告诉研究人员和临床医生如何刺激:通过调频NTBS到感兴趣的振荡区域,内在的大脑振荡可以被上调或下调。本文综述了脑电/脑磁图引导干预的现有方法和思路,以及它们的前景和注意事项。本文发表在Clinical Neurophysiology杂志。

03

NPP: 重复经颅磁刺激产生抗抑郁效果的基础:全脑功能连接与局部兴奋度变化

重复经颅磁刺激 (rTMS) 是重度抑郁症 (MDD) 常用的治疗方式,但是我们对经颅磁刺激产生抗抑郁效果的机制了解甚少。此外,我们也缺乏能够用以预测和追踪临床效果的大脑信号,而这些信号能够帮助进行分层与优化治疗。本研究中,我们进行了随机、假性对照的临床试验,在rTMS前后分别测量电生理、神经成像和临床变化。患者(N=36)被随机分为两组,分别接受有效刺激或伪刺激的,针对左背外侧前额叶皮层(dlPFC)的rTMS干预,为期20个连续工作日。为捕捉由rTMS驱动的大脑连接与因果兴奋性上的变化,我们在干预前后均对患者进行了静息态fMRI和TMS/EEG数据采集。通过同时进行的TMS/fMRI,可以评估抑郁组与健康对照组之间大脑因果连接基线的差异。相比伪刺激组,我们发现rTMS引起了:

04

相位相关TMS对脑电皮层运动网络的影响

已有研究对经颅磁刺激(TMS)应用于大脑振荡,观察磁刺激对大脑状态的影响。然而,没有人研究相位相关的TMS是否可能调节属于同一网络的同源远端脑区连接。在网络靶向TMS的框架下,我们研究了对持续的大脑振荡的特定相位的刺激是否有利于刺激目标的远端网络节点出现更强的皮质-皮质(c-c)同步。在24名健康个体的实验中,TMS脉冲刺激刺激初级运动皮层(M1),间隔1个月,重复两次。考虑到TMS脉冲是在μ频率振荡的正(峰)或负(谷)相位时发出,刺激效应取决于在感觉运动网络的同源区域内c-c同步。扩散加权成像(DWI)用于研究感觉运动网络中的c-c连接,并识别与刺激点连接的对侧区域。根据应用TMS脉冲的时间(峰或谷),其对脑内神经网络同步性的影响有明显的变化。研究发现,谷刺激试次与峰值刺激试次相比,在μ频带进行TMS脉冲后(0-200ms)的M1-M1相位锁值同步更高。本文发表在The Journal of Physiology杂志。

03
领券