量子位 | 若朴 发自 凹非寺 春天来了,又到了人机交战的季节。 七年前的二月,IBM人工智能计算机Watson在答题节目《Jeopardy!(危险边缘)》中称王,击败了这个节目历史上最强大的两位人类高手。这个二月,搜狗人工智能机器人汪仔在答题节目《一站到底》中登场,击败了站到最后的人类选手。 在《jeopardy!》里,最强的人类选手最后不得不写下名句,俯首称臣;而在《一站到底》的赛场上,汪仔也表现出碾压般的优势。同样是答题节目,同样是人工智能,七年时间过去,现在的汪仔和当年的Watson,到底有何不同?
搜狗公司CEO王小川在2016年最后一期《一站到底》结束时为大家留下的悬念:“我会让搜狗的机器人来替我‘报仇’的!” 依约,王小川“派来”的搜狗问答机器人汪仔登陆了新年全新改版《一站到底》。在人类获胜
2014年,人工智能得到了前所未有的关注, Eron Musk和霍金的“人工智能恶魔论”在学术界和产业界引发了激烈争论;资本对这个方向也是趋之若鹜,截止到2004年,有超过20亿美元的风险投资流入到基
你知道吗?人类每听20个词,其实就有一两个成为“漏网之鱼”。而在一段五分钟的对话中,这一数字达到了80。但对于我们而言,少听一两个词并不会影响我们对语意的理解,然而想象一下,计算机如果要完成这件事有多难? 去年,IBM已经在语音识别领域走到了一个新的里程碑:系统的错误率降低为6.9%;而AI科技评论了解到,近日IBM Watson的语音识别系统将这个数字降到了5.5%。 清华大学的邓志东教授此前在采访中向AI科技评论表示,只有AI技术达到人类水平,它才有商业化的可能性。技术越来越接近人类水平也一直是人工
选自IBM 作者:George Saon 机器之心编译 参与:吴攀、黄小天 去年十月,微软人工智能与研究部门的一个研究者和工程师团队报告他们的语音识别系统实现了和专业速录员相当甚至更低的词错率(WER)——达到了 5.9%,参考机器之心文章《重磅 | 微软语音识别实现历史性突破:语音转录达到专业速录员水平(附论文)》。但 IBM 官方博客今日发文宣称人类的水平实际上应该是 5.1%,而同时该文章还表示 IBM 的系统的词错率已经超越了之前微软报告的最佳水平,达到了 5.5%。IBM 宣称这是一个全新的突破,
先回顾下,生活、工作中你使用过哪些语音识别相关的产品或者服务? 培训/考试相关的小程序,使用语音识别来判断回答是否正确; 英语口语练习的小程序,使用语音识别来打分; 你画我猜类的小程序,使用语音识别来判断是否猜对; 活动营销类的小程序,比如口令识别、口令红包等; 直播/短视频类小程序,使用语音识别生成字幕; 客服类的小程序,使用语音识别、语音合成来实现智能客服。 可以看到,语音识别的应用场景越来越广泛,我们在做小程序开发的时候,也经常会遇到使用语音识别的场景;其中语音输入法是非常基础的功能场景,如果能实
最近打车,车里一位哥们在侃侃而谈:现在的互联网+,除了应用在了打车上,其他都是扯淡,没啥用。
语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。
最近打车,车里一位哥们在侃侃而谈:现在的互联网+,除了打车,其他都是扯淡,没啥用。 我相信现实生活中,这样忽视人工智能时代已悄然来临的人不是少数,而且还很多。 毕竟,从事数据行业的人连2%都不到,更别说真正理解数据的人了。 你也许会说,人工智能是那么高深的技术,我又不做相关的技术,了解那么多干什么。 其实,今天我们谈的不是什么复杂的人工智能高深技术,请注意文章前面的标题:时代。 是的,我们谈的是一个新时代下的个人选择问题。说的更本质一些,其实是在说,这样一个新时代(人工智能时代),人类的思维发生了怎样的改变?进而,我们思考这种思维改变会给个人未来的成长带来怎样巨大的改变和机会。 进一步,你最后会明白这几个问题的答案: 1)为什么中学老师在许多年之后总是感叹: 最终,真正有出息的,都是当年成绩一般般的... ... 2)从1984年洛杉矶奥运会开始,到尽头,国人关注奥运会已经32年了。当年的金牌得主们,除了李宁和郎平,剩下的谁记得呢? 3)为何以前起作用的死磕思维,在人工智能时代,不是最好的人生策略选择。而理解和解答所有的这些问题的前提是,你要真正明白什么才是人工智能时代的核心? 好了,废话不多说,我们先来看看在没有人工智能之前,人类的思维模式是怎样的? 1.单维度死磕思维 在这之前,计算机并不擅长于解决人类智能的问题,也就是我们现在所说的人工智能。 怎样才算人工智能呢? 真正科学定义这个概念的是电子计算机的奠基人 阿兰·图灵(Alan Turing)。
语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。 语音识别的首要部分当然是语音。通过麦克风,语音便从物理声音被转换为电信号,然后通过模数转换器转换为数据。一旦被数字化,就可适用若干种模型,将音频转录为文本。 大多数现代语音识别系统都依赖于隐马尔可夫模型(HMM)。其工作原理为:语音信号在非常短的时间尺度上(比如 10 毫秒)可被近似为静止过程,即一个其统计特性不随时间变化的过程。 许多现代语音识别系统会在 HMM 识别之前使用神经网络,通过特征变换和降维的技术来简化语音信号。也可以使用语音活动检测器(VAD)将音频信号减少到可能仅包含语音的部分。 幸运的是,对于 Python 使用者而言,一些语音识别服务可通过 API 在线使用,且其中大部分也提供了 Python SDK。
最近打车,车里一位哥们在侃侃而谈:现在的互联网+,除了打车,其他都是扯淡,没啥用。
【编者按】随着机器学习算法的流行,Amazon、Google,、IBM和Microsoft等公司在机器学习云服务市场接连出手,并提供许多的API来吸引用户。本文中,Janet Wagner,ProgrammableWeb的data journalist、developer和contributor,根据互联网上的活跃度盘点了机器学习API的Top 10,并介绍了它们的功能特色。Janet Wagner同时认为,Project Oxford等少数API虽然没有上榜,但仍值得称道。 如今,机器学习无处不在。它可以
导读:从市场披露的投资数据分析,在2011年到2015年的五年时间,人工智能领域的并购资金从2.82亿美元增长到2015年的23.88亿美元,而并购数量也从67起增长到397起。以谷歌、苹果、IBM、
最近拼车,车里一位哥们在侃侃而谈:现在的互联网+,除了打车,其他都是扯淡,没啥用。
【新智元导读】科技巨头纷纷投入 AI,谁将在这场军备竞赛中胜出?本文介绍谷歌等主要几家巨头公司的AI布局。不过,无论谁最后胜出,消费者都将受益。 人工智能正在迅速成为科技领域最流行的话题之一,科技巨头们也毫不忽视这一趋势。所有的大公司似乎都在以某种方式投资机器学习。 谁将在这场AI军备竞赛中胜出?现在得出定论还太早,但对消费者来说,无论谁胜出消费者都将受益。AI在日常服务以及产品中的渗透只会提升终端用户的体验。 市场研究公司IDC预测,到2020年,AI的市场规模将从今年的80亿美元增长到470亿美元。本文
导读:对于人工智能来说,前60年的人工智能历程,可以用“无穷动”来形容;后60年的人工智能发展,可以用“无穷大”来期许。
雷锋网按:本文摘选自长城证券报告——互联网迎来AI 时代,海外科技巨头争先布局:人工智能深度报告(国外篇一),在未改变原意的基础上略有删减。 PC互联网时代的企业核心竞争力为软件产品的快速反应能力,移动互联网时代是构建移动端的生态系统,人工智能时代则更为依赖 AI 核心技术。 AI技术拥有两大要素: 核心技术平台 数据循环 只有将 AI 技术与数据结合,才可形成实用性的业务。本文主要侧重于介绍IBM、Google在基础层、技术层、应用层全面布局AI,并对其扩展应用场景等内容进行介绍。 IBM——Watso
那么,智能时代跟FreeSWITCH什么关系呢?严格来说,其实没什么关系。你看,我今天又标题党了。
回顾2022,你的年度关键词是什么? 不管是遗憾还是确幸,我们已经迈入2023年,希望在新的一年,我们都能飞云直上。 回顾这一年,我们围绕腾讯云智能文字识别(OCR)、语音识别(ASR)、语音合成(TTS)、慧眼·智能身份认证、智能内容创作等众多公有云产品输出了数十篇广受开发者好评的上云实践干货文章,我们将其集结成册,供广大开发者参考使用。 点击文末左下角阅读原文即可查阅或下载手册。 接下来,福利大放送! 点击下图↓↓↓,看开发者2022年度故事,抢腾讯云智能公有云产品与腾讯云开发者联合年终福利—— 5
【新智元导读】 4月11日,IBM公司在北京举行2017 IBM中国论坛,提出主题“天工开物,人机同行”。下午新智元对IBM大中华区总裁陈黎明进行了访问,探讨Watson作为集IBM 60年在人工智能领域耕耘的成果拥有哪四大能力,以及Watson不止步于搞大新闻,而是如何真真切切地重塑行业,到2017年底Watson将惠及10亿人。 4月11日,IBM公司在北京举行了主题为“天工开物,人机同行”的2017IBM中国论坛。继去年正式在中国宣布向“认知商业”转型后,本次论坛上,IBM进一步明确了发展“商业人工智
AI 科技评论按:语音到文字的转换是语音研究领域的重要课题。自引入神经网络的方法以来,语音识别正确率有了长足的进展,也为苹果 Siri、亚马逊 Echo、科大讯飞语音输入法等等实际产品提供了生长的土壤。面对算法识别总还是比人类要差一些的现状,微软刚刚发布一篇博文公布了自己的最新成果,达到人类水平已经不是梦想。AI 科技评论编译如下。 2016年,微软语音和对话研究团队对外公布了一则里程碑性的消息,他们在 Switchboard 数据库的对话语音识别任务中达到了人类的一致性水平,这意味着他们的系统识别对话中文
本文介绍了语音识别技术中的端到端模型、基于CTC的序列模型、基于序列学习的注意力机制模型、基于3D卷积神经网络的语音识别系统等。其中,端到端模型可以直接从原始音频数据中学习到针对语音识别的抽象表示,具有较好的可扩展性和鲁棒性;而基于CTC的序列模型则通过连接主义学习的方法,将CTC定义的序列映射问题转化为神经网络中的参数优化问题,进一步提高了语音识别的准确率;基于序列学习的注意力机制模型则借鉴了语言学中的注意力机制,通过对输入序列进行加权处理,进一步提高了模型的识别准确率;基于3D卷积神经网络的语音识别系统则利用3D卷积核对输入序列进行卷积处理,提取出序列中的特征信息,进一步提高了模型的识别准确率。
人工智能被认为是继电力和互联网之后又一次对人类社会产生颠覆式影响的技术。美国公司的技术遥遥领先,中国公司擅长商业化、拥有数据优势,在技术上正奋力追赶 《财经》记者 谢丽容 梁辰/文 2015年12月,
【CSDN 现场报道】5月18日—19日,CCTC 2017中国云计算技术大会(Cloud Computing Technology Conference 2017,简称CCTC 2017)在北京朝阳门悠唐皇冠假日酒店隆重召开。本次大会由CSDN主办,是业内极具影响力的云计算和大数据技术年度盛会。彼时,技术社区骨干、典型行业案例代表齐聚京师,解读本年度国内外云计算技术发展最新趋势,深度剖析云计算与大数据核心技术和架构,聚焦云计算技术在金融、电商、制造、能源等垂直领域的深度实践和应用,为观众献上一场最纯粹的技
人工智能正在成为新一代技术变革的基础技术,但从头开始为自己的应用和业务开发人工智能程序既成本高昂,且往往很难达到自己想要的性能表现,但好在我们有大量现成可用的 API 可以使用。开发者可以通过这些 API 将其它公司提供的智能识别、媒体监测和定向广告等人工智能服务集成到自己的产品中。机器之心在 2015 年底就曾经编译过一篇介绍当前优质人工智能和机器学习 API 的文章《技术 | 50 个常用的人工智能和机器学习 API》,列举了 50 个较为常用的涉及到机器学习、推理预测、文本分析及归类、人脸识别、语言翻译等多个方面的 API。一年多过去了,好用的 API 也出现了一些新旧更迭,现在是时候对这篇文章进行更新了。
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对2015 中这个列表的修正与完善,移除了部分被废弃的 API ;我们也添加了最近由 IBM、Google、Microsoft 这些大厂发布的 API 。所有的 API 可以根据应用场景进行分组: 人脸与图片识别。 文本分析,自然语言处理以及情感分析。 语言翻译。 预测以及其他的机器学习算法。 在具体的每个分组内,我们根据首字母顺序排序;
在众多汉字中,同音字(词)是一个特别的存在,正确使用,妙趣横生,使用不当,错误百出。 有网友曾戏谑:再智能的语音识别,遇到同音字(词)都可能“秒变智障”。 有时候,明明是一个温馨感动的时刻,语音识别偏偏剑走偏锋,让你措手不及。 例如: 一下子画风突变。 而语音识别在同音字(词)方面的尴尬还不止于此。 人名“王倩”和“王茜”、小区名“书香苑小区”和“书香院小区”、餐饮词汇“食全食美”和“十全十美”、服装词汇“百衣百顺”和“百依百顺”,乃至日常沟通中的“肌肉”和“鸡肉”、“失忆”和“诗意”、“北麓
在新推出的Comprehend服务之后,亚马逊今天宣布其自动语音识别(ASR)服务Amazon Transcribe获得对实时转录的支持。
据《电脑世界》(PC World)网站2016年4月12日消息,IBM(美国国际商用机器公司)正在研发一种抗击癌症的新式武器。该新式武器将使Watson(沃森,即IBM沃森系统)以一种新的方式发挥作用。通过与美国癌症学会的合作,IBM正在构建一种虚拟健康顾问,该虚拟健康顾问可以利用机器为患者提供个性化信息和建议。 虚拟健康顾问首先检查患者所患癌症的类型、期别及到目前为止所实施的治疗情况,依据这些数据和其它相关数据,提供护理建议并回答患者的问题。沃森的语音识别和自然语言处理功能可使用户提出问题并接收语音答案。
【新智元导读】在本文中,作者先探讨了深度学习的特点和优势,然后介绍了12种类型的AI问题,即:在哪些场景下应该使用人工智能(AI)?作者强调企业AI问题,因为他认为AI会影响许多主流的应用。 深度学习能解决什么问题? 首先,让我们探讨深度学习是什么。 深度学习是指由许多层组成的人工神经网络。“深”是指层数多。相比深度学习,其他的许多机器学习算法是浅的,例如 SVM,因为它们没有多层的深架构。多层的架构允许后面的计算建立在前面的计算之上。目前的深度学习网络已经有10+甚至100+层。 多层的存在使得网络能够学
在过去的一年中,人工智能受到了资本、企业、媒体等各界的热烈追捧。然而,对于逐渐成为新一代计算中不可或缺的重要组成部分的“认知计算”正在同步崛起。比起人工智能的热潮,大众对什么是“认知计算”显然相当模糊,也不清楚它与人工智能、机器学习等相关的内容有什么区别。
腾讯云AI团队联合腾讯优图、AILab、微信智聆、微信智言等实验室,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。 5月,腾讯云神图、腾讯云OCR、语音识别、NLP推出全新功能;腾讯云慧眼、腾讯云神图人脸试妆、腾讯云神图人像变换、腾讯云神图自定义人像分割、腾讯云OCR、语音识别、NLP优化了核心性能。 腾讯云神图·人脸年龄变换 通过算法模型控制输入人脸图片的脸部肌肉紧致程度,肤质细腻程度,皱纹的多少,白发程度等年龄表达,生成从小孩到老年各个年龄平滑过渡的一系列图片,同时
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
前段时间一个饭局上 在某上市公司做策划的朋友酒后吐槽: “已经工作这么多年了 每次大小会议还让我做会议纪要 真心觉得自己大材小用,憋屈了 而且多是在临近下班开会 只能熬夜加班输出会议纪要” 想起刚入职场那会 不是在开会就是在写会议纪要 但写上抬头与开会日期后,就写不下去了…… 领导已经跑题到天天天天天边了~ 纪要抓不住重点,记录跟不上速度 默默的看了一下自己的手 坎多了是不是也就放过它了? 今天特此给大家安利一款语音神器 腾讯云AI语音识别 被微信、腾讯视频等大量内部业务使用 业务延展性
蝙蝠使用生物声呐,为夜晚在丛林中飞行导航。他们的超声波脉冲,可以比人造声呐装置更精确地对声音进行定位。为复制、驾驭这种能力,IBM 学院奖获得者 Rolf Müller 教授协同他在弗吉尼亚理工学院(Virginia Tech)的团队,设计了一种人造蝙蝠耳。 Rolf Müller 的研究引起了 IBM 的注意。IBM 专家韩金萍(音译)的神经计算团队,和 IBM Watson 语音专家崔晓东(音译)和他的同事, 看到了 Müller 教授人造“动态外耳”(dynamic peripheral,蝙蝠可转
“陪伴是最好的表白。”科幻电影中的智能机器人,早已可以满足人类的心灵需求。因为更加智能,相比宠物,未来的机器人应该是最好的玩伴。那么,现阶段机器人发展到什么程度?人类应该以什么样的目光看待这些机器人呢
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪
译者 | 廉洁 编辑 | 明明 出品 | AI科技大本营(公众号ID:rgznai100) 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。通过本指南,你将学到: 语音识别的工作原理; PyPI 支持哪些软件包; 如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于
译者 | 廉洁 编辑 | 明明 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。
整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识
--AI科技大本营-- 整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单
苹果、谷歌还有Facebook都在投资人工智能,它们的计划是什么?还有哪些重量级玩家? 很难确切地说人工智能(AI)究竟会沿着哪条路继续往下走,但是随着像Google、Facebook以及谷歌大举进军
有人听说我想创业,给我提出了一些“忽悠”的办法。他们说,既然你是程序语言专家,而现在人工智能(AI)又非常热,那你其实可以搞一个“自动编程系统”,号称可以自动生成程序,取代程序员的工作,节省许许多多的人力支出,这样就可以趁着“AI 热”拉到投资。 有人甚至把名字都给我想好了,叫“深度程序员”(DeepCoder = Deep Learning + Coder)。口号是:“有了 DeepCoder,不用 Top Coder!” 还有人给我指出了这方向最新的,吹得神乎其神的研究,比如微软的 Robust Fi
人工智能解决方案哪家强?还看Jibo、Pepper、Siri、Google Now和Cortana。目前,在他们之间正进行一场比赛,看谁提供的个人助理更受企业、最终用户和消费者的欢迎,不管是实体的还是
机器之心报道 编辑:杜伟、陈萍 又一位业界大牛加入了学界,这次是 IEEE Fellow、原京东集团高级副总裁周伯文。 今日,根据「清华大学电子工程系」公众号的消息,2021 年从京东集团高级副总裁岗位上离职的周伯文受聘为清华大学电子工程系长聘教授以及清华大学惠妍讲席教授。 目前,清华大学电子工程系官网上已经可以搜到周伯文的相关信息。 自 2003 年从科罗拉多大学波尔得分校获得电子和计算机工程博士学位之后,周伯文便一直在业界打拼。他工作的第一站是 IBM,曾担任 IBM Research 人工智能基础研
一个月前,谷歌宣布在源于Magenta项目的文字转语音(Text-to-Speech,简称TTS)技术上取得代际突破,接着该公司又对其语音转文字(Speech-to-Text,简称STT)API云服务进行了重大升级。更新后的服务利用语音转录的深度学习模型,根据特定用例量身定制:短语音命令、打电话或视频,在所有其他上下文中都有一个默认模型。如今,升级后的服务可以处理120种语言以及不同模型可用性和功能级别的变体。商业应用范围包括电话会议、呼叫中心和视频转录。转录的准确性在有多个扬声器和明显背景噪音的情形下有了
你知道吗? 全球每2周就会有一种语言消失。 语言的消亡意味着珍贵的多样性文化信息流失,与物种的灭绝毫无二致。 现实情况是,濒危语言消亡的速度比濒危动物消亡的速度还要快,据测算,到本世纪末,世界上50%-90%的语言将会消亡。 保护濒危语言是保护文化多样性的重要一步,那么,人工智能又能做什么呢? 语音技术发展到今天,其应用能力已经媲美甚至超越人类平均水平。从历史视角看,不管是地理位置障碍还是语言障碍,它都将是促进和增强人与人、人与机器自然对话的强大工具。 在濒危语言文化保护上,我们由此也看到了新的思路
Zdnet 网站推出机器学习平台横向比较系列文章,以下内容分析谷歌、百度和 IBM 三家大公司 AI 实力,以及是否适合作为你的机器学习平台。谷歌的机器学习平台的优势在于构建更广泛的研究社区,围绕机器学习和民主化机器学习工具和服务的业务。作为在中国对标谷歌的百度,其 AI 平台是百度大脑,并开源机器学习平台 PaddlePaddle,在语音识别和深度学习知识经验方面占有优势。IBM的机器学习平台则以Watson解决方案为核心,实力来自三个关键因素:IBM研究、收购实力及其咨询顾问能力。
领取专属 10元无门槛券
手把手带您无忧上云