> Date: 2021-04-09 16:59:16 +0200 One xchunk_iterator to rule them all diff --git a/include/xtensor.../xchunked_array.hpp b/include/xtensor/xchunked_array.hpp index ed4003d0..23a843ec 100644 --- a/include.../xtensor/xchunked_array.hpp +++ b/include/xtensor/xchunked_array.hpp @@ -126,10 +128,16 @@ namespace.../xchunked_array.hpp | 45 ++++++++++- include/xtensor/xchunked_assign.hpp | 246 +++++++++++++++++++...++++++++++++++++++++++++++------------- include/xtensor/xchunked_view.hpp | 164 +++++++++++-------
参数:tensor(Tensor) -- 输入张量dim(int) -- 删除的维度>>> x = torch.randn(3, 3)>>> xtensor([[ 0.4775, 0.0161, -0.9403
tensors are concatenated out (Tensor, optional) – the output tensorExample:>>> x = torch.randn(2, 3)>>> xtensor
environment micromamba install python=3.10 jupyter -c conda-forge # or micromamba create -n env_name xtensor
Example:>>> x = torch.randn(2, 3)>>> xtensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790,...Example:>>> x = torch.randn(3, 4)>>> xtensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664,...Example:>>> x = torch.randn(3, 4)>>> xtensor([[ 0.3552, -2.3825, -0.8297, 0.3477], [-1.2035,...(0.1995)>>> torch.t(x)tensor(0.1995)>>> x = torch.randn(3)>>> xtensor([ 2.4320, -0.4608, 0.7702])>>>...torch.t(x)tensor([.2.4320,.-0.4608,..0.7702])>>> x = torch.randn(2, 3)>>> xtensor([[ 0.4875, 0.9158
作为QuantStack的开源开发人员,参与了各种项目,从xsimd和xtensor在C ++到ipyleaflet和ipywebrtc在Python和Javascript中。
使用起来大概是这样的: CTensor *xTensor = create_tensor(xP, 1, shape_x_p, 1); CTensor *yTensor = create_tensor(yP..., 1, shape_y_p, 1); CTensor *xy[] = {xTensor, yTensor}; CTensor **xy_p; xy_p = xy; CTensorArray *tarray
environment micromamba install python=3.6 jupyter -c conda-forge # or micromamba create -n env_name xtensor
在 Python 中,这个 Object 可以被解释为一个 Numpy 的 NDArray,而在 C++ 中,这个 Object 可以被解释为一个 xtensor 中的 tensor。
模型输入输出主要就是构造输入输出矩阵,相比python的numpy库,tensorflow提供的Tensor和Eigen::Tensor还是非常难用的,特别是动态矩阵创建,如果你的编译器支持C++14,可以用xTensor
>>> x = torch.randn(2, 3)>>> xtensor([[ 0.0679, -0.3655, -1.5670], [-0.6854, 0.1267, -0.8296]
xtensor: 受NumPy语法启发的C++ 14库,用于使用多维数组表达式进行数值分析。 universal: 只包含头文件的C++ 14库,实现任意假定算数。
领取专属 10元无门槛券
手把手带您无忧上云