首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MySQL InnoDB Architecture 简要介绍

MySQL InnoDB 存储引擎整体架构图:

一、内存存储结构

 1、Buffer Pool

buffer pool 是主内存中的一块儿存储区域,用于存储访问的表及索引数据。这样从内存中直接访问获取使用的数据可以极大的提升访问效率。在一些特殊专用的服务里,几乎 80% 的内存区域都被赋于 buffer pool。

为了提升大数据量读操作效率,buffer pool 被设计划分为能够存储多条记录的数据页。同时,基于链表结构存储实现,LRU算法支持,能够极大的提高缓存管理的效率。

Buffer Pool LRU 算法

buffer pool 使用基于LRU算法的列表数据结构实现。当需要添加新的数据页,最近最少使用的数据页会淘汰,新的数据页会被插入到列表的中间。

中间插入策略会把列表当成两个子列表:

头部用于存储新的最新访问的数据页。

尾部用于存储旧的最少访问的数据页

如下图:Buffer Pool List

算法会将频繁访问的数据页放在新的子列表;最少访问的记录存放在旧列表,并逐渐淘汰。

通常 LRU 算法按如下方式运行:

buffer pool 总量的 3/8 会分配给旧列表。

列表的中间包括新列表的尾部和旧列表的头部。

当 InnoDB 读入一个新的数据页时,会先将其插入列表中间(旧列表的头部)。

旧的子列表数据访问会改变其数据特性,并将其移动到新的子列表头部(预读操作除外)。

随着数据库操作的执行,buffer pool 中未被访问的页数据会逐渐移动到列表的尾部,并淘汰。

通常情况下,被访问的数据会转移到新的子列表,这样就能在 buffer pool 中待更长的时间。一些特定的情景,如mysqldump操作导致的表扫描或者没有附加 where 条件的 select 查询会导致大量的数据写入 buffer pool,并淘汰旧的记录。但是这些新的记录可能永远不会被使用。

2、Change Buffer

change buffer 用于缓存那些不在 buffer pool 存储的二级索引页数据变化。并最终会合并到 buffer pool(当这些页数据被其它读操作载入后)。

如下入示意 Change Buffer:

和聚簇索引不同的是,二级索引通常都非唯一,并且写入顺序随机。同样的,删除和更新操作可能会影响不相邻的多个索引页数据。因此,在其它读操作将受影响的索引页数载入 bufer pool 时合并缓存的索引变更,可以避免再次从磁盘随机IO读取二级索引页数据。

purge operation 会周期性的把更新的页数据批量写入磁盘,这样比即时单条写入更有效率。

当涉及二级索引变更记录比较多时,Change buffer 数据合并可能会花费几个小时。在此期间,磁盘 IO 会增加,进而会影响磁盘密集型查询。

在内存中,change buffer 会占用一部分的 buffer pool 存储使用。在磁盘里,change buffer 是 system tablespace 的一部分,用以存储数据库服务器关机时产生的索引变化数据。

3、 Adaptive Hash Index

自适应哈希索引使得 InnoDB 支持基于内存的数据库,通过  配置启用。

基于当前的搜索模式,哈希索引使用索引键前缀来构建。前缀可长可短,根据实际查询需求而定。

4、Log Buffer

存储内存日志数据,用于磁盘日志文件数据写入。配置:innodb_log_buffer_size。默认大小 16MB。log buffer 的数据会周期性的刷盘。较大的 log buffer 有利于较大的事务日志数据写入需求。对于执行大批量更新、写入或删除操作的事务可以适当调高 log buffer 以减少磁盘IO。

二、磁盘存储结构

1、Index 索引

a)聚簇索引及二级索引

基于 InnoDB 引擎的表使用一种称之为聚簇索引的特殊索引来存储行数据。通常情况下,聚簇索引等同于主键索引。

InnoDB 会使用表上定义的主键来作为聚簇索引,如果当前表没有能够作为主键的列(数据逻辑唯一非空的单列或者多列组合),则可以添加自增列作为非业务主键。

如果表未定义主键,则 InnoDB 会使用首个唯一索引(所有列非空)作为聚簇索引。

如果表既没有主键也没有合适的唯一索引,则 InnoDB 会为表创建一个隐藏的聚簇索引 GEN_CLUST_INDEX,该索引基于 InnoDB 为表自动添加的包含行ID值的列,所有表数据会基于该ID值排序。行ID值是一个6字节数值,会随着数据的插入单调递增,因此基于此列排序的表在物理上保持着数据插入顺序。

除了聚簇索引,其它的索引都是二级锁索引,二级索引除了设置的索引列外,还包含主键,最终 InnoDB 都要通过主键来查找聚簇索引里的数据。

如果主键过长,那么二级索引就会占用更大的空间,所以,通常我们都建议设置较短的主键。

B 树索引使用:

支持列 =、>、>=、

like 操作支持:like 后面的参数需要为常量并且不能以通配符起始。

对于 is NULL 条件,如果条件列有索引,则查询会使用到索引。

对于多列复合索引,如果要使用它们,则在每一个 and 条件分组里都必须使用它们:

一些特殊情况,如优化器测算使用索引会需要访问表中大量的数据,那么即使条件列命中了索引使用条件也不会使用索引。

b)InnoDB 索引物理结构

除了空间索引(基于 R-trees,用以组织存储多维数据),InnoDB 索引都是基于 B-tree 结构。数据存储于树的叶子结点。

索引数据页默认大小为 16KB,可以通过 mysql 实例初始化时的 innodb_page_size 参数来调整。

当向聚簇索引插入新的记录时,InnoDB 会保留1/16页空间用以应对将来可能的插入和更新。如果是顺序插入,则索引页空间会保持差不多15/16大小。如果是随机的,则页空间大小会在1/2 到 15/16之间。一般低于1/2(MERGE_THRESHOLD 配置)会触发索引树压缩。

c)Sorted Index Builds

InnoDB 使用 bulk load 方式执行索引创建或重建,我们称之为 Sorted index build(不支持空间索引)。

索引重建通常分为三步:

扫描聚簇索引,生成索引记录并添加到 sort buffer。sort buffer 满了之后,记录会被排序并写入一个临时的中介文件

随着多个第一步这个过程写入数据到临时中介文件,文件里的索引记录会执行合并。

排序的索引记录写入 B-tree。

在 Sorted index builds 引入之前,B-tree 索引写入使用特定的写入API。首先需要打开一个 B-tree 游标并找到写入位置,然后使用 optimistic  方式将索记录写入 B-tree。当遇到当前写入页满时,optimistic 会执行相应的 B-tree 节点的分裂或者合并操作来满足写入空间需求。这种自上而下的构建方式存在一定的缺点,包括寻址及经常性的节点分裂及合并成本。

Sorted index builds 基于自底而上的方式来构建索引。从 B-tree 每层最右侧的叶子节点开始,基于索引记录顺序写入。当一个节点页写满,则向其父节点添加一个新的子节点用于新的写入。

2、table space 表空间

3、double buffer 

具体介绍见博客园文章:mysql 优化之 doublewrite buffer 机制

4、Redo Log

redo log 是一种基于磁盘的数据结构,用于修正数据库崩溃恢复期间未完成事务造成的数据脏写。

redo log 磁盘存储数据文件为  和 ,MySQL 以环形方式写入。

配置修改:1、配置文件 my.cnf;2、大小 ;3、数量:.

5、Undo logs

记录单个事务中的一系列记录变更,用以恢复对聚簇索引记录的最新变更。如果有其它事务基于一致性读操作需要查看原始数据,可以从 undo log 记录里查询。

6、InnoDB Data Dictionary 

包括一系列系统表,存储包括表、索引及表列等相关元数据,物理存储在系统表空间。由于一些历史原因,data dictionary metadata 部分存储在 InnoDB 表空间文件 ( files)。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20230421A03YM800?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券