首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

余弦相似度算法进行客户流失分类预测

余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。具体来说,假设有两个向量A和B,它们的余弦相似度可以通过以下公式计算:

其中,dot_product(A, B)表示向量A和B的点积,norm(A)和norm(B)分别表示向量A和B的范数。如果A和B越相似,它们的余弦相似度就越接近1,反之亦然。

数据集

我们这里用的演示数据集来自一个datacamp:

这个数据集来自一家伊朗电信公司,每一行代表一个客户一年的时间。除了客户流失标签,还有客户活动的信息,比如呼叫失败和订阅时长等等。我们最后要预测的是这个客户是否流失,也就是一个二元分类的问题。

数据集如下:

import pandas as pd

df = pd.read_csv("data/customer_churn.csv")

我们先区分训练和验证集:

from sklearn.model_selection import train_test_split

# split the dataframe into 70% training and 30% testing sets

train_df, test_df = train_test_split(df, test_size=0.3)

SVM

为了进行对比,我们先使用SVM做一个基础模型

from sklearn.svm import SVC

from sklearn.metrics import classification_report, confusion_matrix

# define the range of C and gamma values to try

c_values = [0.1, 1, 10, 100]

gamma_values = [0.1, 1, 10, 100]

# initialize variables to store the best result

best_accuracy = 0

best_c = None

best_gamma = None

best_predictions = None

# loop over the different combinations of C and gamma values

for c in c_values:

   for gamma in gamma_values:

       # initialize the SVM classifier with RBF kernel, C, and gamma

       clf = SVC(kernel='rbf', C=c, gamma=gamma, random_state=42)

       # fit the classifier on the training set

       clf.fit(train_df.drop('Churn', axis=1), train_df['Churn'])

       # predict the target variable of the test set

       y_pred = clf.predict(test_df.drop('Churn', axis=1))

       # calculate accuracy and store the result if it's the best so far

       accuracy = clf.score(test_df.drop('Churn', axis=1), test_df['Churn'])

       if accuracy > best_accuracy:

           best_accuracy = accuracy

           best_c = c

           best_gamma = gamma

           best_predictions = y_pred

# print the best result and the confusion matrix

print(f"Best result: C={best_c}, gamma={best_gamma}, accuracy={best_accuracy:.2f}")

print("Confusion matrix:")

print(confusion_matrix(test_df['Churn'], best_predictions))

可以看到支持向量机得到了87%的准确率,并且很好地预测了客户流失。

余弦相似度算法

这段代码使用训练数据集来计算类之间的余弦相似度。

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity

# calculate the cosine similarity matrix between all rows of the dataframe

cosine_sim = cosine_similarity(train_df.drop('Churn', axis=1))

# create a dataframe from the cosine similarity matrix

cosine_sim_df = pd.DataFrame(cosine_sim, index=train_df.index, columns=train_df.index)

# create a copy of the train_df dataframe without the churn column

train_df_no_churn = train_df.drop('Churn', axis=1)

# calculate the mean cosine similarity for class 0 vs. class 0

class0_cosine_sim_0 = cosine_sim_df.loc[train_df[train_df['Churn'] == 0].index, train_df[train_df['Churn'] == 0].index].mean().mean()

# calculate the mean cosine similarity for class 0 vs. class 1

class0_cosine_sim_1 = cosine_sim_df.loc[train_df[train_df['Churn'] == 0].index, train_df[train_df['Churn'] == 1].index].mean().mean()

# calculate the mean cosine similarity for class 1 vs. class 1

class1_cosine_sim_1 = cosine_sim_df.loc[train_df[train_df['Churn'] == 1].index, train_df[train_df['Churn'] == 1].index].mean().mean()

# display the mean cosine similarities for each pair of classes

print('Mean cosine similarity (class 0 vs. class 0):', class0_cosine_sim_0)

print('Mean cosine similarity (class 0 vs. class 1):', class0_cosine_sim_1)

print('Mean cosine similarity (class 1 vs. class 1):', class1_cosine_sim_1)

下面是它们的余弦相似度:

然后我们生成一个DF

import pandas as pd

# create a dictionary with the mean and standard deviation values for each comparison

data = {

   'comparison': ['Class 0 vs. Class 0', 'Class 0 vs. Class 1', 'Class 1 vs. Class 1'],

   'similarity_mean': [class0_cosine_sim_0, class0_cosine_sim_1, class1_cosine_sim_1],

}

# create a Pandas DataFrame from the dictionary

df = pd.DataFrame(data)

df = df.set_index('comparison').T

# print the resulting DataFrame

print(df)

下面就是把这个算法应用到训练数据集上。我取在训练集上创建一个sample_churn_0,其中包含10个样本以的距离。

# create a DataFrame containing a random sample of 10 points where Churn is 0

sample_churn_0 = train_df[train_df['Churn'] == 0].sample(n=10)

然后将它交叉连接到test_df。这将使test_df扩充为10倍的行数,因为每个测试记录的右侧有10个示例记录。

import pandas as pd

# assume test_df and sample_churn_0 are your dataframes

# add a column to both dataframes with a common value to join on

test_df['join_col'] = 1

sample_churn_0['join_col'] = 1

# perform the cross-join using merge()

result_df = pd.merge(test_df, sample_churn_0, on='join_col')

# drop the join_col column from the result dataframe

result_df = result_df.drop('join_col', axis=1)

现在我们对交叉连接DF的左侧和右侧进行余弦相似性比较。

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity

# Extract the "_x" and "_y" columns from the result_df DataFrame, excluding the "Churn_x" and "Churn_y" columns

df_x = result_df[[col for col in result_df.columns if col.endswith('_x') and not col.startswith('Churn_')]]

df_y = result_df[[col for col in result_df.columns if col.endswith('_y') and not col.startswith('Churn_')]]

# Calculate the cosine similarities between the two sets of vectors on each row

cosine_sims = []

for i in range(len(df_x)):

   cos_sim = cosine_similarity([df_x.iloc[i]], [df_y.iloc[i]])[0][0]

   cosine_sims.append(cos_sim)

# Add the cosine similarity values as a new column in the result_df DataFrame

result_df['cos_sim'] = cosine_sims

然后用下面的代码提取所有的列名:

x_col_names = [col for col in result_df.columns if col.endswith('_x')]

这样我们就可以进行分组并获得每个test_df记录的平均余弦相似度(目前重复10次),然后在grouped_df中,我们将其重命名为x_col_names:

grouped_df = result_df.groupby(result_df.columns[:14].tolist()).agg({'cos_sim': 'mean'})

grouped_df = grouped_df.rename_axis(x_col_names).reset_index()

grouped_df.head()

最后我们计算这10个样本的平均余弦相似度。

在上面步骤中,我们计算的分类相似度的df是这个:

我们就使用这个数值作为分类的参考。首先,我们需要将其交叉连接到grouped_df(与test_df相同,但具有平均余弦相似度):

cross_df = grouped_df.merge(df, how='cross')

cross_df = cross_df.iloc[:, :-1]

结果如下:

最后我们得到了3列:Class 0 vs. Class 0, and Class 0 vs. Class 1,然后我们需要得到类之间的差别:

cross_df['diff_0'] = abs(cross_df['cos_sim'] - df['Class 0 vs. Class 0'].iloc[0])

cross_df['diff_1'] = abs(cross_df['cos_sim'] - df['Class 0 vs. Class 1'].iloc[0])

预测的代码如下:

# Add a new column 'predicted_churn'

cross_df['predicted_churn'] = ''

# Loop through each row and check the minimum difference

for idx, row in cross_df.iterrows():

  if row['diff_0'] < row['diff_1']:

      cross_df.at[idx, 'predicted_churn'] = 0

  else:

      cross_df.at[idx, 'predicted_churn'] = 1

最后我们看看结果:

grouped_df__2 = cross_df.groupby(['predicted_churn', 'Churn_x']).size().reset_index(name='count')

grouped_df__2['percentage'] = grouped_df__2['count'] / grouped_df__2['count'].sum() * 100

grouped_df__2.head()

可以看到,模型的准确率为84.25%。但是我们可以看到,他的混淆矩阵看到对于某些预测要比svm好,也就是说它可以在一定程度上解决类别不平衡的问题。

总结

余弦相似性本身并不能直接解决类别不平衡的问题,因为它只是一种计算相似度的方法,而不是一个分类器。但是,余弦相似性可以作为特征表示方法,来提高类别不平衡数据集的分类性能。本文只是作为一个样例还有可以提高的空间。

本文的数据集在这里:(需要注册)

https://www.datacamp.com/workspace/datasets/dataset-r-telecom-customer-churn

如果你有兴趣可以自行尝试。

作者:Ashutosh Malgaonkar

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20230503A013T800?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券