认识Redis

Redis

Redis是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库、缓存服务或消息服务使用。

Redis支持多种数据结构,包括字符串、哈希表、链表、集合、有序集合、位图、Hyperloglogs等。

Redis具备LRU淘汰、事务实现、以及不同级别的硬盘持久化等能力,并且支持副本集和通过Redis Sentinel实现的高可用方案,同时还支持通过Redis Cluster实现的数据自动分片能力。

Redis的主要功能都基于单线程模型实现,也就是说Redis使用一个线程来服务所有的客户端请求,同时Redis采用了非阻塞式IO,并精细地优化各种命令的算法时间复杂度,这些信息意味着:

1.Redis是线程安全的(因为只有一个线程),其所有操作都是原子的,不会因并发产生数据异常

2.Redis的速度非常快(因为使用非阻塞式IO,且大部分命令的算法时间复杂度都是O(1))

3.使用高耗时的Redis命令是很危险的,会占用唯一的一个线程的大量处理时间,导致所有的请求都被拖慢。(例如时间复杂度为O(N)的KEYS命令,严格禁止在生产环境中使用)

redis的五种数据结构

字符串类型

字符串是Redis中最基本的数据类型,它能够存储任何类型的字符串,包含二进制数据。可以用于存储邮箱,JSON化的对象,甚至是一张图片,一个字符串允许存储的最大容量为512MB。

字符串是其他四种类型的基础,与其他几种类型的区别从本质上来说只是组织字符串的方式不同而已。

散列类型

散列类型相当于Java中的HashMap,他的值是一个字典,保存很多key,value对,每对key,value的值个键都是字符串类型,换句话说,散列类型不能嵌套其他数据类型。一个散列类型键最多可以包含2的32次方-1个字段。

列表类型

列表类型(list)用于存储一个有序的字符串列表,常用的操作是向队列两端添加元素或者获得列表的某一片段。列表内部使用的是双向链表(double linked list)实现的,所以向列表两端添加元素的时间复杂度是O(1),获取越接近列表两端的元素的速度越快。但是缺点是使用列表通过索引访问元素的效率太低(需要从端点开始遍历元素)。所以列表的使用场景一般如:朋友圈新鲜事,只关心最新的一些内容。借助列表类型,Redis还可以作为消息队列使用。

集合类型

集合在概念在高中课本就学过,集合中每个元素都是不同的,集合中的元素个数最多为2的32次方-1个,集合中的元素师没有顺序的。

有序集合类型

有序集合类型与集合类型的区别就是他是有序的。有序集合是在集合的基础上为每一个元素关联一个分数,这就让有序集合不仅支持插入,删除,判断元素是否存在等操作外,还支持获取分数最高/最低的前N个元素。有序集合中的每个元素是不同的,但是分数却可以相同。有序集合使用散列表和跳跃表实现,即使读取位于中间部分的数据也很快,时间复杂度为O(log(N)),有序集合比列表更费内存。

Redis持久化

RDB

采用RDB持久方式,Redis会定期保存数据快照至一个rbd文件中,并在启动时自动加载rdb文件,恢复之前保存的数据。

RDB的优点:

对性能影响最小。如前文所述,Redis在保存RDB快照时会fork出子进程进行,几乎不影响Redis处理客户端请求的效率。

每次快照会生成一个完整的数据快照文件,所以可以辅以其他手段保存多个时间点的快照(例如把每天0点的快照备份至其他存储媒介中),作为非常可靠的灾难恢复手段。

使用RDB文件进行数据恢复比使用AOF要快很多。

RDB的缺点:

快照是定期生成的,所以在Redis crash时或多或少会丢失一部分数据。

如果数据集非常大且CPU不够强(比如单核CPU),Redis在fork子进程时可能会消耗相对较长的时间(长至1秒),影响这期间的客户端请求。

AOF

采用AOF持久方式时,Redis会把每一个写请求都记录在一个日志文件里。在Redis重启时,会把AOF文件中记录的所有写操作顺序执行一遍,确保数据恢复到最新。

AOF默认是关闭的。

AOF的优点:

最安全,在启用appendfsync always时,任何已写入的数据都不会丢失,使用在启用appendfsync everysec也至多只会丢失1秒的数据。

AOF文件在发生断电等问题时也不会损坏,即使出现了某条日志只写入了一半的情况,也可以使用redis-check-aof工具轻松修复。

AOF文件易读,可修改,在进行了某些错误的数据清除操作后,只要AOF文件没有rewrite,就可以把AOF文件备份出来,把错误的命令删除,然后恢复数据。

AOF的缺点:

AOF文件通常比RDB文件更大

性能消耗比RDB高

数据恢复速度比RDB慢

无持久化

Redis的数据持久化机制是可以关闭的。如果你只把Redis作为缓存服务使用,Redis中存储的所有数据都不是该数据的主体而仅仅是同步过来的备份,那么可以关闭Redis的数据持久化机制。

但通常来说,仍然建议至少开启RDB方式的数据持久化,因为:

RDB方式的持久化几乎不损耗Redis本身的性能,在进行RDB持久化时,Redis主进程唯一需要做的事情就是fork出一个子进程,所有持久化工作都由子进程完成

Redis无论因为什么原因crash掉之后,重启时能够自动恢复到上一次RDB快照中记录的数据。这省去了手工从其他数据源(如DB)同步数据的过程,而且要比其他任何的数据恢复方式都要快

现在硬盘那么大,真的不缺那一点地方

数据淘汰机制

Redis提供了5种数据淘汰策略:

volatile-lru:使用LRU算法进行数据淘汰(淘汰上次使用时间最早的,且使用次数最少的key),只淘汰设定了有效期的key

allkeys-lru:使用LRU算法进行数据淘汰,所有的key都可以被淘汰

volatile-random:随机淘汰数据,只淘汰设定了有效期的key

allkeys-random:随机淘汰数据,所有的key都可以被淘汰

volatile-ttl:淘汰剩余有效期最短的key

最好为Redis指定一种有效的数据淘汰策略以配合maxmemory设置,避免在内存使用满后发生写入失败的情况。

一般来说,推荐使用的策略是volatile-lru,并辨识Redis中保存的数据的重要性。对于那些重要的,绝对不能丢弃的数据(如配置类数据等),应不设置有效期,这样Redis就永远不会淘汰这些数据。对于那些相对不是那么重要的,并且能够热加载的数据(比如缓存最近登录的用户信息,当在Redis中找不到时,程序会去DB中读取),可以设置上有效期,这样在内存不够时Redis就会淘汰这部分数据。

Redis的事务可以确保复数命令执行时的原子性。也就是说Redis能够保证:一个事务中的一组命令是绝对连续执行的,在这些命令执行完成之前,绝对不会有来自于其他连接的其他命令插进去执行。

需要注意的是,Redis事务不支持回滚:

如果一个事务中的命令出现了语法错误,大部分客户端驱动会返回错误,2.6.5版本以上的Redis也会在执行EXEC时检查队列中的命令是否存在语法错误,如果存在,则会自动放弃事务并返回错误。

但如果一个事务中的命令有非语法类的错误(比如对String执行HSET操作),无论客户端驱动还是Redis都无法在真正执行这条命令之前发现,所以事务中的所有命令仍然会被依次执行。在这种情况下,会出现一个事务中部分命令成功部分命令失败的情况,然而与RDBMS不同,Redis不提供事务回滚的功能,所以只能通过其他方法进行数据的回滚。

主从复制 vs 集群分片

在设计软件架构时,要如何在主从复制和集群分片两种部署方案中取舍呢?

从各个方面看,Redis Cluster都是优于主从复制的方案

Redis Cluster能够解决单节点上数据量过大的问题

Redis Cluster能够解决单节点访问压力过大的问题

Redis Cluster包含了主从复制的能力

那是不是代表Redis Cluster永远是优于主从复制的选择呢?

并不是。

软件架构永远不是越复杂越好,复杂的架构在带来显著好处的同时,一定也会带来相应的弊端。采用Redis Cluster的弊端包括:

维护难度增加。在使用Redis Cluster时,需要维护的Redis实例数倍增,需要监控的主机数量也相应增加,数据备份/持久化的复杂度也会增加。同时在进行分片的增减操作时,还需要进行reshard操作,远比主从模式下增加一个Slave的复杂度要高。

客户端资源消耗增加。当客户端使用连接池时,需要为每一个数据分片维护一个连接池,客户端同时需要保持的连接数成倍增多,加大了客户端本身和操作系统资源的消耗。

性能优化难度增加。你可能需要在多个分片上查看Slow Log和Swap日志才能定位性能问题。

事务和LUA Script的使用成本增加。在Redis Cluster中使用事务和LUA Script特性有严格的限制条件,事务和Script中操作的key必须位于同一个分片上,这就使得在开发时必须对相应场景下涉及的key进行额外的规划和规范要求。如果应用的场景中大量涉及事务和Script的使用,如何在保证这两个功能的正常运作前提下把数据平均分到多个数据分片中就会成为难点。

所以说,在主从复制和集群分片两个方案中做出选择时,应该从应用软件的功能特性、数据和访问量级、未来发展规划等方面综合考虑,只在确实有必要引入数据分片时再使用Redis Cluster。

下面是一些建议:

需要在Redis中存储的数据有多大?未来2年内可能发展为多大?这些数据是否都需要长期保存?是否可以使用LRU算法进行非热点数据的淘汰?综合考虑前面几个因素,评估出Redis需要使用的物理内存。

用于部署Redis的主机物理内存有多大?有多少可以分配给Redis使用?对比(1)中的内存需求评估,是否足够用?

Redis面临的并发写压力会有多大?在不使用pipelining时,Redis的写性能可以超过10万次/秒(更多的benchmark可以参考 https://redis.io/topics/benchmarks )

在使用Redis时,是否会使用到pipelining和事务功能?使用的场景多不多?

综合上面几点考虑,如果单台主机的可用物理内存完全足以支撑对Redis的容量需求,且Redis面临的并发写压力距离Benchmark值还尚有距离,建议采用主从复制的架构,可以省去很多不必要的麻烦。同时,如果应用中大量使用pipelining和事务,也建议尽可能选择主从复制架构,可以减少设计和开发时的复杂度。

Redis Java客户端的选择

Redis的Java客户端很多,官方推荐的有三种:Jedis、Redisson和lettuce。

  • 发表于:
  • 原文链接:https://kuaibao.qq.com/s/20180627G0OYH300?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。

扫码关注云+社区

领取腾讯云代金券