逻辑回归模型及Python实现

1.模型

在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1。假设我们有一个特征X,画出散点图,结果如下所示。这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ+θ1X,若Y≥0.5则判断为1,否则为0。这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差、准确率低。而逻辑回归对于这样的问题会更加合适。

逻辑回归假设函数如下,它对θTX作了一个函数g变换,映射至0到1的范围之内,而函数g称为sigmoid function或者logistic function,函数图像如下图所示。当我们输入特征,得到的hθ(x)其实是这个样本属于1这个分类的概率值。也就是说,逻辑回归是用来得到样本属于某个分类的概率。

2.评价

回想起之前线性回归中所用到的损失函数:

如果在逻辑回归中也运用这种损失函数,得到的函数J是一个非凸函数,存在多个局部最小值,很难进行求解,因此需要换一个cost函数。重新定义个cost函数如下:

当实际样本属于1类别时,如果预测概率也为1,那么损失为0,预测正确。相反,如果预测为0,那么损失将是无穷大。这样构造的损失函数是合理的,并且它还是一个凸函数,十分方便求得参数θ,使得损失函数J达到最小。

3.优化

我们已经定义好了损失函数J(θ),接下来的任务就是求出参数θ。我们的目标很明确,就是找到一组θ,使得我们的损失函数J(θ)最小。最常用的求解方法有两种:批量梯度下降法(batch gradient descent), 牛顿迭代方法((Newton's method)。两种方法都是通过迭代求得的数值解,但是牛顿迭代方法的收敛速度更加快。

批量梯度下降法:

牛顿迭代方法:(H为海瑟矩阵)

4.python代码实现

1 # -*- coding: utf-8 -*-

2 """

3 Created on Wed Feb 24 11:04:11 2016

4

5 @author: SumaiWong

6 """

7

8 import numpy as np

9 import pandas as pd

10 from numpy import dot

11 from numpy.linalg import inv

12

13 iris = pd.read_csv('D:\iris.csv')

14 dummy = pd.get_dummies(iris['Species']) # 对Species生成哑变量

15 iris = pd.concat([iris, dummy], axis =1 )

16 iris = iris.iloc[0:100, :] # 截取前一百行样本

17

18 # 构建Logistic Regression , 对Species是否为setosa进行分类 setosa ~ Sepal.Length

19 # Y = g(BX) = 1/(1+exp(-BX))

20 def logit(x):

21 return 1./(1+np.exp(-x))

22

23 temp = pd.DataFrame(iris.iloc[:, 0])

24 temp['x0'] = 1.

25 X = temp.iloc[:,[1,0]]

26 Y = iris['setosa'].reshape(len(iris), 1) #整理出X矩阵 和 Y矩阵

27

28 # 批量梯度下降法

29 m,n = X.shape #矩阵大小

30 alpha = 0.0065 #设定学习速率

31 theta_g = np.zeros((n,1)) #初始化参数

32 maxCycles = 3000 #迭代次数

33 J = pd.Series(np.arange(maxCycles, dtype = float)) #损失函数

34

35 for i in range(maxCycles):

36 h = logit(dot(X, theta_g)) #估计值

37 J[i] = -(1/100.)*np.sum(Y*np.log(h)+(1-Y)*np.log(1-h)) #计算损失函数值

38 error = h - Y #误差

39 grad = dot(X.T, error) #梯度

40 theta_g -= alpha * grad

41 print theta_g

42 print J.plot()

43

44 # 牛顿方法

45 theta_n = np.zeros((n,1)) #初始化参数

46 maxCycles = 10 #迭代次数

47 C = pd.Series(np.arange(maxCycles, dtype = float)) #损失函数

48 for i in range(maxCycles):

49 h = logit(dot(X, theta_n)) #估计值

50 C[i] = -(1/100.)*np.sum(Y*np.log(h)+(1-Y)*np.log(1-h)) #计算损失函数值

51 error = h - Y #误差

52 grad = dot(X.T, error) #梯度

53 A = h*(1-h)* np.eye(len(X))

54 H = np.mat(X.T)* A * np.mat(X) #海瑟矩阵, H = X`AX

55 theta_n -= inv(H)*grad

56 print theta_n

57 print C.plot()

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20171217A0LK8H00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

同媒体快讯

扫码关注腾讯云开发者

领取腾讯云代金券