首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

应用 5:层峦叠嶂——redis布隆过滤器

上一节我们学会了使用 HyperLogLog 数据结构来进行估数,它非常有价值,可以解决很多精确度不高的统计需求。

但是如果我们想知道某一个值是不是已经在 HyperLogLog 结构里面了,它就无能为力了,它只提供了 pfadd 和 pfcount 方法,没有提供 pfcontains 这种方法。

讲个使用场景,比如我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的?

你会想到服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。问题是当用户量很大,每个用户看过的新闻又很多的情况下,这种方式,推荐系统的去重工作在性能上跟的上么?

实际上,如果历史记录存储在关系数据库里,去重就需要频繁地对数据库进行 exists 查询,当系统并发量很高时,数据库是很难扛住压力的。

你可能又想到了缓存,但是如此多的历史记录全部缓存起来,那得浪费多大存储空间啊?而且这个存储空间是随着时间线性增长,你撑得住一个月,你能撑得住几年么?但是不缓存的话,性能又跟不上,这该怎么办?

这时,布隆过滤器 (Bloom Filter) 闪亮登场了,它就是专门用来解决这种去重问题的。它在起到去重的同时,在空间上还能节省 90% 以上,只是稍微有那么点不精确,也就是有一定的误判概率。

布隆过滤器是什么?

布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。

当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见过你。

套在上面的使用场景中,布隆过滤器能准确过滤掉那些已经看过的内容,那些没有看过的新内容,它也会过滤掉极小一部分 (误判),但是绝大多数新内容它都能准确识别。这样就可以完全保证推荐给用户的内容都是无重复的。

Redis 中的布隆过滤器

Redis 官方提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后才正式登场。布隆过滤器作为一个插件加载到 Redis Server 中,给 Redis 提供了强大的布隆去重功能。

下面我们来体验一下 Redis 4.0 的布隆过滤器,为了省去繁琐安装过程,我们直接用 Docker 吧。

如果上面三条指令执行没有问题,下面就可以体验布隆过滤器了。

布隆过滤器基本使用

布隆过滤器有二个基本指令,bf.add 添加元素,bf.exists 查询元素是否存在,它的用法和 set 集合的 sadd 和 sismember 差不多。注意 bf.add 只能一次添加一个元素,如果想要一次添加多个,就需要用到 bf.madd 指令。同样如果需要一次查询多个元素是否存在,就需要用到 bf.mexists 指令。

似乎很准确啊,一个都没误判。下面我们用 Python 脚本加入很多元素,看看加到第几个元素的时候,布隆过滤器会出现误判。

Java 客户端 Jedis-2.x 没有提供指令扩展机制,所以你无法直接使用 Jedis 来访问 Redis Module 提供的 bf.xxx 指令。RedisLabs 提供了一个单独的包 JReBloom,但是它是基于 Jedis-3.0,Jedis-3.0 这个包目前还没有进入 release,没有进入 maven 的中央仓库,需要在 Github 上下载。在使用上很不方便,如果怕麻烦,还可以使用 lettuce,它是另一个 Redis 的客户端,相比 Jedis 而言,它很早就支持了指令扩展。

执行上面的代码后,你会张大了嘴巴发现居然没有输出,塞进去了 100000 个元素,还是没有误判,这是怎么回事?如果你不死心的话,可以将数字再加一个 0 试试,你会发现依然没有误判。

原因就在于布隆过滤器对于已经见过的元素肯定不会误判,它只会误判那些没见过的元素。所以我们要稍微改一下上面的脚本,使用 bf.exists 去查找没见过的元素,看看它是不是以为自己见过了。

Java 版:

运行后,我们看到了输出是 214,也就是到第 214 的时候,它出现了误判。

那如何来测量误判率呢?我们先随机出一堆字符串,然后切分为 2 组,将其中一组塞入布隆过滤器,然后再判断另外一组的字符串存在与否,取误判的个数和字符串总量一半的百分比作为误判率。

Java 版:

运行一下,等待大约一分钟,输出:

可以看到误判率大约 1% 多点。你也许会问这个误判率还是有点高啊,有没有办法降低一点?答案是有的。

我们上面使用的布隆过滤器只是默认参数的布隆过滤器,它在我们第一次 add 的时候自动创建。Redis 其实还提供了自定义参数的布隆过滤器,需要我们在 add 之前使用bf.reserve指令显式创建。如果对应的 key 已经存在,bf.reserve会报错。bf.reserve有三个参数,分别是 key, error_rate和initial_size。错误率越低,需要的空间越大。initial_size参数表示预计放入的元素数量,当实际数量超出这个数值时,误判率会上升。

所以需要提前设置一个较大的数值避免超出导致误判率升高。如果不使用 bf.reserve,默认的error_rate是 0.01,默认的initial_size是 100。

接下来我们使用 bf.reserve 改造一下上面的脚本:

Java 版本:

运行一下,等待约 1 分钟,输出如下:

我们看到了误判率大约 0.012%,比预计的 0.1% 低很多,不过布隆的概率是有误差的,只要不比预计误判率高太多,都是正常现象。

注意事项

布隆过滤器的initial_size估计的过大,会浪费存储空间,估计的过小,就会影响准确率,用户在使用之前一定要尽可能地精确估计好元素数量,还需要加上一定的冗余空间以避免实际元素可能会意外高出估计值很多。

布隆过滤器的error_rate越小,需要的存储空间就越大,对于不需要过于精确的场合,error_rate设置稍大一点也无伤大雅。比如在新闻去重上而言,误判率高一点只会让小部分文章不能让合适的人看到,文章的整体阅读量不会因为这点误判率就带来巨大的改变。

布隆过滤器的原理

学会了布隆过滤器的使用,下面有必要把原理解释一下,不然读者还会继续蒙在鼓里

每个布隆过滤器对应到 Redis 的数据结构里面就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。

向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。

向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个 key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组比较稀疏,判断正确的概率就会很大,如果这个位数组比较拥挤,判断正确的概率就会降低。具体的概率计算公式比较复杂,感兴趣可以阅读扩展阅读,非常烧脑,不建议读者细看。

使用时不要让实际元素远大于初始化大小,当实际元素开始超出初始化大小时,应该对布隆过滤器进行重建,重新分配一个 size 更大的过滤器,再将所有的历史元素批量 add 进去 (这就要求我们在其它的存储器中记录所有的历史元素)。因为 error_rate 不会因为数量超出就急剧增加,这就给我们重建过滤器提供了较为宽松的时间。

空间占用估计

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180917G0N33B00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券