资深测试人浅谈性能测试

本文主要针对WEB系统的性能测试。不涉及具体的执行操作,只是本人对性能测试的一点理解和认识。

性能测试的目的,简单说其实就是为了获取待测系统的响应时间、吞吐量、稳定性、容量等信息。而发现一些具体的性能相关的缺陷(如内存溢出、并发处理等问题),我认为只是一种附加结果。从更高的层次来说,性能测试最想发现的,是瓶颈。如何能得到所需要的信息,就需要从多方面进行测试。

性能测试的内容

性能测试种类的划分与定义这里就不说了,各有各的说法,比如性能测试、负载测试、压力测试这三个词,在网上能找到N个版本的定义,大体理解就行了,没必要在文字层面上较这个真。以下的内容也只是我个人的理解,一些名词的定义可能和其他资料有所不同,但在我的工作中,这样是比较形象和容易理解的。

在实际工作,一般的应用系统会从这么几个方面进行性能测试。

01

基准测试

Benchmark或者Baseline测试。一般为单用户测试,或者是零数据量环境下的测试。目的在于建立一个可度量的参考标准,为其他测试场景或者调优过程提供对比参考。也可认为是最基础的性能测试,如果基准测试的结果都不能达到预期要求,那么后续场景也就没必要测试了。

2

日常压力测试

在基准测试通过后,应该先进行较小压力下的测试,首先对系统在日常压力下的表现进行测试。此压力需要根据系统使用相关数据得出,如系统平均每天访问量、平均在线人数、每日完成事务数等。通过此测试,发现一些较表面的性能问题并进行处理。

3

峰值压力测试

在日常压力测试通过后,需要进行更大压力的测试。此处压力同样需要相关数据的支持,一般为未来几年后的预期压力。可根据历史日均压力、日最高压力等信息,估算出未来几年的日均以及日最高压力。再通过一些通用估算方法、如二八原则(80%的工作在20%时间内完成,相当于2小时完成一天8小时的工作量),将日压力转换成峰值压力。

峰值压力为可预期到的最大负载压力,通过了此测试,则认为系统有能力满足未来增长的压力。

4

容量测试

验证了系统是否可满足预期的压力后,还需要知道系统能够承受的最大压力,也就是容量。一般通过“拐点法”进行测试,逐步增大系统的压力,直到性能指标不可接受或者出现了明显的拐点。如下图,拐点在哪?

5

稳定性测试

验证系统是否可长期稳定的运行,是否存在一些短时间内可能无法发现的缺陷(如内存溢出、数据库连接不释放等)。为了缩短测试工期,一般可将预期一天的压力集中在2小时内完成(二八原则),这样持续加压10小时,便相当于系统运行5天。注意监控各种性能指标是否平稳,有无下降。

以上几种类型的测试,是性能测试过程中最多用到的。当然也也其他一些比较常用的类型,如绝对并发测试,测试多用户对某一功能的瞬时请求,主要用于验证系统是否存在并发逻辑上的处理问题。此测试也可划分到不同的压力测试场景中去,根据不同的用户压力,测试相应的绝对并发,一般取在线用户数的10%进行测试;突发压力测试,对一些不在预期内的突然压力进行测试(其实既然想到了,就应该是在预期内了)。以银行门户网站为例,可能会由于发布了一条重要消息(政策调整)而导致访问量激增,这种压力是否会导致系统宕机或者暂时无法提供服务,就是突发压力测试需要考虑的了。也有人将此压力定义为峰值压力,这就无所谓了,只要考虑到会有这么一个问题就够了。

性能测试的阶段

上面主要说的是测试内容的划分,也就是说做性能测试时要考虑到的几个方面。从实际执行层面来看,测试的过程一般分为这么几个阶段:

1

测试确认

理解被测系统、寻找测试点、确认测试范围、测试环境等。一些重要信息需要同PM、需求人员、设计人员讨论确认,如用户最常用哪些功能、最关注哪的性能,程序上哪可能是压力点,哪些数据需要模拟到真实的量级,大体上需要使用哪种测试方法。

2

确定通过标准

性能是好是坏、测试是否通过,必须有明确的标准。这个标准,主要从客户的期望和业务上的需求两方面来考虑,客户的期望一般指页面上的响应时间,业务需求则是系统的处理能力,一般为吞吐量或TPS(每秒完成事务数)。标准制定的不合理,测试结果可能无法反映系统真实的性能表现,或者会让客户无法接受我们认为通过的软件。

至于具体如何去设定,是需要同业务负责人(一般为PM)和技术负责人(一般为设计人员)共同确认的,业务负责人了解用户的实际需求和期望,技术负责人了解具体的实现,可以判断哪些是不可达到的要求。

一旦达成了共识,那么测试就要严格的按照标准去执行。

3

测试设计

主要从上面提到的几个方面进行分析,针对系统的特点设计出合理的测试场景。为了让测试结果更加准确,这里需要很细致的工作。如建立用户模型,只有知道真实的用户是如何对系统产生压力,才可以设计出有代表性的压力测试场景。这就涉及到很多信息,如用户群的分布、各类型用户用到的功能、用户的使用习惯、工作时间段、系统各模块压力分布等等。只有从多方面不断的积累这种数据,才会让压力场景更有意义。最后将设计场景转换成具体的用例。

测试数据的设计也是一个重点且容易出问题的地方。生成测试数据量达到未来预期数量只是最基础的一步,更需要考虑的是数据的分布是否合理,需要仔细的确认程序中使用到的各种查询条件,这些重点列的数值要尽可能的模拟真实的数据分布(数据统计信息、执行计划相关的内容,此处就不细说了),否则测试的结果可能是无效的。

此外,性能测试执行过程中,需要监控收集的各种指标数据,也需要明确下来。

4

测试环境准备

部署测试环境,生成测试数据,环境预调优等等。预调优指根据系统的特点和自己的经验,提前对系统的各个方面做一些优化调整,避免测试执行过程中的无谓返工。比如一个高并发的系统,10000人在线,连接池和线程池的配置还用默认的,显然是会测出问题的。

5

测试执行、监控

准备测试脚本,执行之前设计好的各个用例,监控并收集需要的数据。出现问题时,切记要全面的保留事故现场、或者是能进行分析的数据。比如TOMCAT不再响应,不能只把这个现象记录下来,这对问题的排查定位是没有意义的,要保留所有相关的日志,导出线程转储和堆转储。

6

问题分析定位、调优

发现问题或者性能指标达不到预期,及时的分析定位,处理后重复测试过程。

性能问题通常是相互关联相互影响的,表面上看到的现象很可能不是根本问题,而是另一处出现问题后引起的反应。这就要求监控收集数据时要全面,从多方面多个角度去判断定位。

调优的过程其实也是一种平衡的过程,在系统的多个方面达到一个平衡即可。

7

性能报告

将测试过程中记录的各种数据汇总成报告,将各方面需要的结果清楚的展现出来。

上面所有内容中,如果排除技术上的问题,性能测试中最难做好的,就是用户模型(或者叫系统使用模型)的分析。它直接决定了压力测试场景是否能够有效的模拟真实世界压力,而正是这种对真实压力的模拟,才使性能测试有了更大的意义。可以说,性能测试做到一定程度,差距就体现在了模型建立上。

至于性能问题的分析、定位或者调优,很大程度是一种技术问题,需要多方面的专业知识。数据库、操作系统、网络、开发都是一个合格的性能测试人员需要拥有的技能,只有这样,才能从多角度全方位的去考虑分析问题。

当然,对于测试人员来说,技术能力只能排在第二号,测试思想才是最根本的。敏锐的嗅觉、严谨的逻辑、合理的推测、大胆的实践是一个合格测试工程师的必备要素。

......

查看全文内容,点击阅读原文

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180918B1FJPJ00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。

扫码关注云+社区

领取腾讯云代金券