数据预处理代码分享——机器学习与数据挖掘

数据预处理分为6步:

第1步:导入NumPy和Pandas库。NumPy和Pandas是每次都要导入的库,其中Numpy包含了数学计算函数,Pnadas是一个用于导入和管理数据集(Data Sets)的类库。

第2步:导入数据集。数据集一般都是.csv格式,csv文件以文本形式存储数据。每一行数据是一条记录。我们使用pandas类库的read_csv方法读取本地的csv文件作为一个dataframe。然后从datafram中分别创建自变量和因变量的矩阵和向量。

第3步:处理缺失的数据。我们得到的数据很少是完整的。数据可能因为各种原因丢失,为了不降低机器学习模型的性能,需要处理数据。我们可以用整列的平均值或者中间值替换丢失的数据。我们用sklearn.preprocessing库中的Inputer类完成这项任务。

第4步:对分类数据进行编码。分类数据指的是含有标签值而不是数字值得变量。取值范围通常是固定的。例如“YES”和“NO”不能用于模型的数学计算,所以需要编码成数字。为数显这一功能,我们从sklearn.preprocessing库中导入LabelEncoder类。

第5步:拆分数据集为测试集合和训练集合。把数据集拆分成两个,一个是用来训练模型的训练集合,另一个是用来验证模型的测试集合。两种比例一般是80:20。我们导入sklearn.crossvalidation库中的train_test_split()方法。

第6步:特征缩放。大部分模型算法使用两点间的欧式近距离表示,但此特征在幅度、单位和范围姿态问题上变化很大。在距离计算中,高幅度的特征比低幅度特征权重大。可用特征标准化或Z值归一化解决。导入sklearn.preprocessing库的StandardScalar类。

代码如下:

1 Step 1: 导入类库

2

3 import numpy as np

4 import pandas as pd

5

6 Step 2: 导入数据集

7 dataset = pd.read_csv('Data.csv')

8 X = dataset.iloc[ : , :-1].values

9 Y = dataset.iloc[ : , 3].values

10

11 Step 3: 处理缺失的数据

12 from sklearn.preprocessing import Imputer

13 imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)

14 imputer = imputer.fit(X[ : , 1:3])

15 X[ : , 1:3] = imputer.transform(X[ : , 1:3])

16

17 Step 4:编码分类数据

18 from sklearn.preprocessing import LabelEncoder, OneHotEncoder

19 labelencoder_X = LabelEncoder()

20 X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])

21 Creating a dummy variable

22

23 onehotencoder = OneHotEncoder(categorical_features = [0])

24 X = onehotencoder.fit_transform(X).toarray()

25 labelencoder_Y = LabelEncoder()

26 Y = labelencoder_Y.fit_transform(Y)

27

28 Step 5: 切分数据集成训练数据和测试数据

29 from sklearn.cross_validation import train_test_split

30 X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)

31

32 Step 6: 特征缩放

33 from sklearn.preprocessing import StandardScaler

34 sc_X = StandardScaler()

35 X_train = sc_X.fit_transform(X_train)

36 X_test = sc_X.fit_transform(X_test)

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180919A1DHE600?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券