手把手教你如何用 OpenCV+Python 实现人脸识别

下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。

PYTHON

Python是一种用LISP和JAVA编译的语言。按照Norvig文章中对Lips和Python的比较,这两种语言彼此非常相似,仅有一些细小的差别。还有JPthon,提供了访问Java图像用户界面的途径。这是PeterNorvig选择用JPyhton翻译他人工智能书籍中程序的的原因。JPython可以让他使用可移植的GUI演示,和可移植的http/ftp/html库。因此,它非常适合作为人工智能语言的。

必备知识

Haar-like

通俗的来讲,就是作为人脸特征即可。

Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。

opencv api

要想使用opencv,就必须先知道其能干什么,怎么做。于是API的重要性便体现出来了。就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了。

如下:

读取图片

只需要给出待操作的图片的路径即可。

import cv2

image = cv2.imread(imagepath)

灰度转换

灰度转换的作用就是:转换成灰度的图片的计算强度得以降低。

import cv2

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

画图

opencv 的强大之处的一个体现就是其可以对图片进行任意编辑,处理。

下面的这个函数最后一个参数指定的就是画笔的大小。

import cv2

cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)

显示图像

编辑完的图像要么直接的被显示出来,要么就保存到物理的存储介质。

import cv2

cv2.imshow("Image Title",image)

获取人脸识别训练数据

看似复杂,其实就是对于人脸特征的一些描述,这样opencv在读取完数据后很据训练中的样品数据,就可以感知读取到的图片上的特征,进而对图片进行人脸识别。

import cv2

face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')

里卖弄的这个xml文件,就是opencv在GitHub上共享出来的具有普适的训练好的数据。我们可以直接的拿来使用。

训练数据参考地址:

https://github.com/opencv/opencv/tree/master/data/haarcascades

探测人脸

说白了,就是根据训练的数据来对新图片进行识别的过程。

import cv2

# 探测图片中的人脸

faces = face_cascade.detectMultiScale(

gray,

scaleFactor = 1.15,

minNeighbors = 5,

minSize = (5,5),

flags = cv2.cv.CV_HAAR_SCALE_IMAGE

)

我们可以随意的指定里面参数的值,来达到不同精度下的识别。返回值就是opencv对图片的探测结果的体现。

处理人脸探测的结果

结束了刚才的人脸探测,我们就可以拿到返回值来做进一步的处理了。但这也不是说会多么的复杂,无非添加点特征值罢了。

import cv2

print "发现个人脸!".format(len(faces))

for(x,y,w,h) in faces:

cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)

实例

有了刚才的基础,我们就可以完成一个简单的人脸识别的小例子了。

图片素材

下面的这张图片将作为我们的检测依据。

人脸检测代码

# coding:utf-8

import sys

reload(sys)

sys.setdefaultencoding('utf8')

# __author__ = '郭 璞'

# __date__ = '2016/9/5'

# __Desc__ = 人脸检测小例子,以圆圈圈出人脸

import cv2

# 待检测的图片路径

imagepath = r'./heat.jpg'

# 获取训练好的人脸的参数数据,这里直接从GitHub上使用默认值

face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')

# 读取图片

image = cv2.imread(imagepath)

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

# 探测图片中的人脸

faces = face_cascade.detectMultiScale(

gray,

scaleFactor = 1.15,

minNeighbors = 5,

minSize = (5,5),

flags = cv2.cv.CV_HAAR_SCALE_IMAGE

)

print "发现个人脸!".format(len(faces))

for(x,y,w,h) in faces:

# cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)

cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2)

cv2.imshow("Find Faces!",image)

cv2.waitKey(0)

人脸检测结果

输出图片:

输出结果:

D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py

发现3个人脸!

在人工智能上使用Python比其他编程语言的好处

优质的文档

平台无关,可以在现在每一个*nix版本上使用

和其他面向对象编程语言比学习更加简单快速

Python有许多图像加强库像Python Imaging Libary,VTK和Maya 3D可视化工具包,Numeric Python, Scientific Python和其他很多可用工具可以于数值和科学应用。

Python的设计非常好,快速,坚固,可移植,可扩展。很明显这些对于人工智能应用来说都是非常重要的因素。

对于科学用途的广泛编程任务都很有用,无论从小的shell脚本还是整个网站应用。

最后,它是开源的。可以得到相同的社区支持。

PYTHON

Python是一种用LISP和JAVA编译的语言。按照Norvig文章中对Lips和Python的比较,这两种语言彼此非常相似,仅有一些细小的差别。还有JPthon,提供了访问Java图像用户界面的途径。这是PeterNorvig选择用JPyhton翻译他人工智能书籍中程序的的原因。JPython可以让他使用可移植的GUI演示,和可移植的http/ftp/html库。因此,它非常适合作为人工智能语言的。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180120A0RTOL00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。

扫码关注云+社区

领取腾讯云代金券