华盛顿大学物理学家实现离子运动控制新突破;Xanadu与Multiverse Computing联手探索金融领域应用

华盛顿大学物理学家实现离子运动控制新突破

有助于改进量子计算机

Katie McCormick, a physicist at the University of Washington in Seattle, reports inNaturethat her team has generated quantum states at a level that nobody has before. The researchers are able to control the motion of a trapped ion of beryllium and set it oscillating within the electromagnetic field that confined it, with any number of quanta up to 100, breaking previously published records of about 17 quanta.

The team also put the ion in a superposition between a state with no quanta of energy and one with 18. Scientists’ newly demonstrated prowess with ions could also be used to build better quantum computers.

物理学家Katie McCormick

来自华盛顿大学的物理学家Katie McCormick近日在《自然》杂志上宣称,她的研究团队实现了控制量子态的重大突破。具体表现在控制捕获的铍离子的运动,并使其在一定范围的电磁场内振荡,量子数可以达到100个,打破了之前公布的约17个量子的记录。

该团队还实现了离子状态的叠加,即无量子和18个量子的叠加状态。在离子运动控制领域的新进展被认为可用于构建更好的量子计算机。

量子计算初创公司

Xanadu与Multiverse Computing联手

探索金融领域应用

Xanadu and Multiverse Computing sign a partnership agreement. The two startups will collaborate towards devising financial applications of optical quantum computing.

Multiverse Computing is an early-stage start-up based in San Sebastian (Spain) exploring applications of quantum computing in finance. Xanadu is a Canadian start-up based in Toronto building optical quantum computing devices and specialized software. The agreement has been signed by Román Orús (Co Founder & CSO of Multiverse Computing) and Christian Weedbrook (CEO of Xanadu).

最近,量子计算初创公司Xanadu与Multiverse Computing签署了合作协议,将携手设计以量子计算技术为基础的金融类应用软件。

Multiverse Computing公司成立不久,位于西班牙北部城市圣塞巴斯蒂安,公司主要业务为开发量子计算在金融领域的应用。Xanadu总部位于加拿大多伦多,主要生产光学量子计算设备和专业软件。本次合作协议由Multiverse Computing的联合创始人兼首席运营官Román Orús先生与Xanadu首席执行官Christian Weedbrook先生共同签署。

Qu & Co 公司开源量子化学编码软件开发包

Qu & Co, an Amsterdam based quantum-software developer, has released quantum-code-chemistry, an end-to-end stack which compiles and executes quantum-chemistry algorithms for current-day NISQ level quantum processors.

This package implements the popular Variational Quantum Eigensolver (VQE) algorithm, which shortens the quantum circuit depth by applying a quantum-classical hybrid optimization scheme and makes it better suited for the current generation of small and noisy quantum processors.

Qu & Co is one of Rigetti’s QCS Development Partners and has made the software executable on Rigetti’s Quantum Cloud Services platform as well as a wide range of simulation back ends.

部分Qu&Co量子化学软件包代码

最近,总部位于阿姆斯特丹的量子软件开发公司Qu&Co开源了一款量子化学编码软件开发包,这是一种端到端堆栈,可编译执行量子化学算法,适用于当前含噪声中等规模量子处理器。

该软件包采用了流行的VQE算法,通过量子-经典混合优化方案的应用,缩短了量子电路的深度,使其更适合当前小型和含噪声量子处理器的生成。

Qu&Co是Rigetti量子云服务开发的合作伙伴之一,因此该软件包可在Rigetti的量子云服务平台以及各种模拟后端上执行。

大阪大学研究组发现量子信息传输新方法

A research team led by Takafumi Fujita in Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot; by altering the spin state of a single electron trapped, the team used laser light to send quantum information to a quantum dot.

The readout method used the Pauli exclusion principle, which prohibits two electrons from occupying the exact same state. The rapid optical manipulation of individual spins is a promising method for producing a quantum nano-scale general computing platform and achieving many other applications, including optimization and chemical simulations.

圆偏振光子激发电子自旋的自旋检测示意图

来自大阪大学的物理教授Takafumi Fujita领导的研究小组发现一种新方法,可以将圆偏振激光的编码信息转换成量子点中电子的自旋状态;通过改变电子的自旋状态,研究小组可用激光向量子点传输量子信息。

信息读出方法使用了泡利不相容原理,即两个电子不能处于完全相同的状态。对单个自旋电子的快速光学操作将有助于生产纳米级的通用量子计算平台,并实现诸如优化组合、化学模拟等其他应用。

伊利诺伊大学芝加哥分校教授成功捕捉Majorana费米子图像有助于构建量子计算模块

Dirk Morr, professor of physics at the University of Illinois at Chicago, in collaboration with his colleagues at the University of Hamburg in Germany, have imaged an exotic quantum particle — called a Majorana fermion — that can be used as a building block for future qubits and eventually the realization of quantum computers. Their findings are reported in the journal Science Advances.

The imaging of a single Majorana fermion is achieved by “topological superconductor”. Morr’s colleagues at the University of Hamburg placed an island of magnetic iron atoms, only tens of nanometers in diameter, on the surface of rhenium, a superconductor. By using a scanning tunneling microscope, the experimental group has observed a Majorana fermion as a bright line along the edge of the island of iron atoms (shown as follows). The imaging is another step closer to building robust qubits, and ultimately quantum computers.

左图:铼表面聚集的铁原子单层;

右图:Majorana费米子图像

来自伊利诺伊大学芝加哥分校(UIC)的物理学教授Dirk Morr与德国汉堡大学的同事合作,拍摄了一种名为Majorana费米子的奇异量子粒子的图像,这种粒子可以作为未来构建量子比特的模块,并最终实现量子计算机。这一研究成果最近发表在《科学进展》杂志上。

单个Majorana费米子的成像是通过“拓扑超导体”的构建而实现。为了建立拓扑超导体,Morr在汉堡大学的同事在超导体——铼的表面上放置了一个磁性铁原子岛,直径只有几十纳米。通过使用扫描隧道显微镜,实验小组观察到Majorana费米子的成像为沿着铁原子岛边缘的一条亮线(见上图)。Majorana费米子新成像将有助于构建鲁棒性量子比特,直到达成构建量子计算机的目标。

部分图片来源于网络

编译:Jasmine

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190809A0NCAA00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励