学习
实践
活动
专区
工具
TVP
写文章

ABB刘前进:机器人和AI的结合,如何赋能工业互联网?

8月20日-25日,“2019世界机器人大会”在北京亦创国际会展中心举行。8月22日,ABB(中国)有限公司首席技术官刘前进在新兴应用与实践论坛作了主题为《机器与人:从共存到共事》的报告。

不管是Alpha Go击败李世石,还是Google语音订餐,包括各种游戏,看着可能很炫,但是为什么不能干点正事呢?有观点认为,让计算机搬起茶杯要比打败李世石困难得多,因为面对的所有空间、路径都是不可知的。

现如今,人类与机器人的关系,已从过去的竞争变成了现在的协作,也就是从竞争、共存、协作到未来的共事。例如在一些3C工厂,工人一天八到十个小时重复站在那里去做同一件工作,那么对这种工作,我们希望他可以完全被自动化替代。同时,利用人类的认知、适应或者创造等能力去做更加有意义的工作。

而过去几年中,火得不能再火的人工智能技术,他与机器人的结合,在工业互联网的落地中起到什么作用,扮演的角色又是什么?

通过文中的分析,你就会知道其实有很多有用的案例,例如:物流场景中,不同工件的识别和抓取等,此外,通过将人工智能、机器人技术引入到工业互联网领域,还会带来一些新的变化,过去几年的主要变化就是在认知和理解方面所做的工作,现在我们看到强化学习推进的过程优化都是完成这样的过程。

刘前进在演讲中分享了ABB在机器人和人工智能方面的工作进展。

他认为机器人和人工智能在Alpha Go击败李世石,Google语音订餐,以及今天玩的各种游戏背后,更多的是一种挑战。他想把人工智能、深度学习和现实生活、工业等结合在一起。

看似简单的工作,对机器人可能很难

刘前进说,现实生活不像游戏当中,有约束和条件,所需面对的情况远比游戏复杂得多,真正工业场景中需要人工智能技术处理的任务更为复杂。好比一个人搬着大箱子把门撞开,并双手使劲去转把手,然后角落站着一个三岁小孩看着这个人试了两次打不开,他就直接走过去把门打开了。而电脑在没有任何训练和学习的情况下,是做不到这件事情的,所以让机器人完成看似很简单、很基础的工作其实是非常难的。

人机关系:从竞争到协作

刘前进说,传统机器人就是不停重复高精度、精准的工作,而协作机器人则是真正和人配合,进行人机协作完成工作。这样,机器人一下子变得亲和许多。

刘前进提到,机器换人、设备上网、数据上云,是工业4.0针对工业3.0的主要变化趋势。自动化和自主化需要有更高的水准,但不是完全的无人化。过去的十年当中很多工作消失了,也有很多新的工作出现了,但人始终是不可替代的,因为人在这个过程当中能创造更多工作的机会和工种。把人类原来重复的、低技术含量的工作通过机器进行替代,把人释放出来,利用人类认知、适应能力或者创造能力去做更加有意义的工作。因此,人机协作一定会有更好的前景,也让我们的生活变得更加有意义。

刘前进认为,一个真正协作的机器人,就是不用加上视觉和传感装置,就可以被动地和人进行合作。原来的目标是机器换人,现在要求人进到机器工作的范围以内,在紧密的工作区域内和机器完全互动,机器人可以接受零件,完成整个工业流程。人机从过去的竞争到现在的协作,也就是从竞争、共存、协作到未来的共事,真正和人一起去工作,这是我们对人机协作定义的状态。

工业场景中的人工智能

刘前进说,过去几年,深度学习领域有很多突破,比如人脸识别和游戏示范,能够达到人类无法企及的高度,在这些数据统计当中产生知识,并和人类专家结合,是工业当中我们期望看到的,算法和专家结合起来之后能够增加人类潜力,也有更多的应用机会,这是我们未来希望看到人工智能的方向。

刘前进总结了机器学习和深度学习在光伏、风电等各种工业场景的工作示范,共分三类:

首先,是预测维护。根据设备的现场数据可以从历史数据当中预测设备的安全性,而不是等到故障以后再做紧急的修补或者定期的维护。

再者,资产健康软件系统。通过资产健康软件,可及时检测出设备所存在的安全隐患,对于工业生产运营而言,能够提高整个生产运行的水平。

最后是远程服务中心。通过远程检测了解故障,有最好的专家保障设备的安全运营。

机器人和人工智能如何结合?

关于机器人的安装和使用,刘前进说,现在的机器人使用相比过去有很大的进步,但还是有些复杂。他希望未来可以不用专业工程师去教它,机器人在看到我们的产业线工人在做什么就会主动了解这项工作,并知道自己能不能完成这项工作。

刘前进提到,Image Light的识别率从70%提升到了90%是非常好的例子,但是和机器人结合的话会发现现场工况很难标注,没有办法预测所有的场景。因而,更重要的是规律。把规则完全定义好是自动化工人做的事情,但是一定会有域外发生,那么这能够完全依靠从大数据抓取数据的AI来做件这事情吗?

刘前进将数据和AI结合的难度划分为三个层次:

第一层次,可以把现在我们深度学习做的一些工作来做位置识别,准确知道机器人抓取要到什么地方,我们也做了很有意义的示范;

第二层次是技能,就是做了什么工作,然后指导机器人完成,甚至给出一个起始点和终点以后根据过去我们所做的数据强化学习完成某个规则。经过一段时间的强化训练以后,发现我们可以达到这种效果,就是600多万个不同种类的空间之中,机器人强化学习可以达到96%的识别率,之后我们会有更好的办法,希望达到99%以上,甚至再有新的东西出来以后能够简化学习的过程;

第三层次是应用程序的端到端学习,自己学习背后的机理、经验和知识,抓住以后可以变成规则。

刘前进解释说,通用函数是不可解释的,虽然可以很粗暴地达到一定精度,但是你不知道它的时候就不能用,这对工业来说几乎是不可接受的,所以我们希望能够有更好的办法让它变得更加可解释,更加容易泛化,也更容易合作。

他提到,在湛江,ABB有一家合作的公司,这是国内最大的海鲜制品公司,其产线基本是全程自动化,除了一个环节。当我们在必胜客吃凤尾虾时,要先把皮去掉,如何让不同形状大小的虾让机器识别,既能保证足够的肉又能够把皮剥掉?这个环节必须由人完成,所以给人0.5平米的工位,人就站在那里八小时不停地把虾扒出来放到指定位置。不说这个工作很辛苦,光是味道就会让你觉得很难受。

我们的科学家到了现场看了实际情况后,通过不同的照片标注、识别、确定精准度,最后可以达到98%的精度,这样就是最后一个环节通过自动化,这位同事就在现场听报告。拍下一张图片当中有几十只虾,通过算法推理一下子就把虾的抓取点标识出来,交给机器人之后完全可以完成剩下的工作,“机器人抓虾,不抓瞎”。

这是物流场合大家经常碰到的场景,就是不同的工件混合在一起进行抓取,难度在哪里呢?

因为形状不规则,传统的机器视觉很难做到,而且是堆放在一起的,即使是不同规则输入库里,怎么保证产生新的形状,知道哪个先抓,哪个后抓。这是目前工业机器人领域能够把混合、堆叠、识别做到最高的水平的一个案例,也是目前我们做到的最好Case。

工业人工智能,或者是把人工智能做得有意义的事情和机器人进行结合。传统的方式是用一个完成的模型,然后我们执行感知分析和控制逻辑,这是传统工程师在做的工作。人工智能引入这个环节会带来一些新的变化,过去几年的主要变化就是在认知和理解方面所做的工作,现在我们看到强化学习推进的过程优化都是完成这样的过程。

工业人工智能我们希望做的不仅是认知和理解,具体解决也可以带来更多的突破。一个工厂当中的自动化系统一定有些场合、有些场景不是我们工程师提前预测到的,之前没有预测和发生过的事情我们能怎么做?能不能让机器自我学习,处理一些之前没有预料到过的状况,没有发生过的事情,可以有些基本的识别和判断,给出可以解决的方案出来?这是我们期待工业人工智能未来所做的工作,这个过程当中人是永远存在的,不仅是监测整个生产过程,随时可以取代自动化系统,介入、操作和完成。这是我们自己对工业人工智能的定义,从自动化到自主化,希望未来我们能够有真正完全自主化的工作环境,也为人类创造更美好的环境。

总结

人机关系的改变,从过去的竞争到现在的协作,以及未来可能真正和人一起去工作,这些转变将会给人类的生产生活带来极大的便利。传统机器人都是任劳任怨的机器人,就是不停重复高精度、精准的工作,而协作机器人的出现,可以真正和人配合着一起工作。

现如今,工业互联网的概念愈发火热,各种新技术层出不穷,而人工智能、机器人的应用将进一步为工业互联网赋能。随着国家层面对产业升级、创新、经济新动能的进一步强调,工业互联网作为智能制造的基础平台,将会在整个制造业发展过程中起到越来越关键的作用。

来源:雷锋网

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190828A0HJR000?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

关注

腾讯云开发者公众号
10元无门槛代金券
洞察腾讯核心技术
剖析业界实践案例
腾讯云开发者公众号二维码

扫码关注腾讯云开发者

领取腾讯云代金券