Apache Flink OLAP引擎性能优化及应用

导读:本次分享的主题为Apache Flink新场景——OLAP引擎,主要内容包括:

  • 背景介绍
  • Apache Flink OLAP引擎
  • 案例介绍
  • 未来计划

1. OLAP及其分类

OLAP是一种让用户可以用从不同视角方便快捷的分析数据的计算方法。主流的OLAP可以分为3类:多维OLAP ( Multi-dimensional OLAP )、关系型OLAP ( Relational OLAP ) 和混合OLAP ( Hybrid OLAP ) 三大类。

多维OLAP ( MOLAP )

  • 传统的OLAP分析方式
  • 数据存储在多维数据集中

关系型OLAP ( ROLAP )

  • 以关系数据库为核心,以关系型结构进行多维数据的表示
  • 通过SQL的where条件以呈现传统OLAP的切片、切块功能

混合OLAP ( HOLAP )

  • 将MOLAP和ROLPA的优势结合起来,以获得更快的性能

接下来为大家详细介绍下:

① MOLAP

典型代表

MOLAP的典型代表是Kylin和Druid。

处理流程

  • 对原始数据做数据预处理
  • 预处理后的数据存至数据仓库
  • 用户的请求通过OLAP server查询数据仓库中的数据

MOLAP的优点和缺点

MOLAP的优点和缺点都来自于其数据预处理 ( pre-processing ) 环节。数据预处理,将原始数据按照指定的计算规则预先做聚合计算,这样避免了查询过程中出现大量的临时计算,提升了查询性能,同时也为很多复杂的计算提供了支持。

但是这样的预聚合处理,需要预先定义维度,会限制后期数据查询的灵活性;如果查询工作涉及新的指标,需要重新增加预处理流程,损失了灵活度,存储成本也很高;同时,这种方式不支持明细数据的查询。

因此,MOLAP适用于对性能非常高的场景。

② ROLAP

典型代表

ROLAP的典型代表是Presto和Impala。

处理流程

  • 用户的请求直接发送给OLAP server
  • OLAP serve将用户的请求转换成关系型操作算子:
    1. 通过SCAN扫描原始数据
    2. 在原始数据基础上做过滤、聚合、关联等处理
  • 将计算结果返回给用户

ROLAP的优点和缺点

ROLAP不需要进行数据预处理 ( pre-processing ),因此查询灵活,可扩展性好。这类引擎使用MPP架构 ( 与Hadoop相似的大型并行处理架构,可以通过扩大并发来增加计算资源 ),可以高效处理大量数据。但是当数据量较大或query较为复杂时,查询性能也无法像MOLAP那样稳定。所有计算都是临时发生 ( 没有预处理 ),因此会耗费更多的计算资源。

因此,ROLAP适用于对查询灵活性高的场景。

③ HOLAP

混合OLAP,是MOLAP和ROLAP的一种融合。当查询聚合性数据的时候,使用MOLAP技术;当查询明细数据时,使用ROLAP技术。在给定使用场景的前提下,以达到查询性能的最优化。

2. Apache Flink介绍

① 当前Apache Flink支持的应用场景

Apache Flink支持的3种典型应用场景:

  1. 事件驱动的应用
  • 反欺诈
  • 基于规则的监控报警
  1. 流式Pipeline
  • 数据ETL
  • 实时搜索引擎的索引
  1. 批处理&流处理分析
  • 网络质量监控
  • 消费者实时数据分析

② Apache Flink 架构

③ Apache Flink 优势

  1. 统一框架 ( 不区分流处理和批处理 )
  • 用户API统一
  • 执行引擎统一
  1. 多层次API
  • 标准SQL APL
  • Table API
  • DataStream API ( 灵活,无schema限制 )
  1. 高性能
  • 支持内存计算
  • 支持代价模型优化
  • 支持代码动态生成
  1. 方便集成
  • 支持丰富的Connectors
  • 方便对接现有catalog
  1. 灵活的Failover策略
  • 在Pipeline下支持快速failover
  • 类似MapReduce、Spark一样支持shuffle数据落盘
  1. 易部署维护
  • 灵活部署方案
  • 支持高可用

1. Apache Flink OLAP引擎

① 为什么Apache Flink 可以做ROLAP引擎?

  • Flink的核心和基础是流计算,支持高性能、低延迟的大规模计算
  • Blink将批看作有限流,批处理是针对有限数据集的优化,因此批处理引擎也是构建在流引擎上 ( 已开源 )
  • OLAP是响应时间要求更短的批处理,因此OLAP可以看作是一种特殊的批。OLAP引擎也可以构建在现有的批引擎上

注:Flink OLAP引擎目前不带存储,只是一个计算框架

② Apache Flink 做OLAP引擎的优势

统一引擎:流处理、批处理、OLAP统一使用Flink引擎

  • 降低学习成本,仅需要学习一个引擎
  • 提高开发效率,很多SQL是流批通用
  • 提高维护效率,可以更集中维护好一个引擎

既有优势:利用Flink已有的很多特性,使OLAP使用场景更为广泛

  • 使用流处理的内存计算、Pipeline
  • 支持代码动态生成
  • 也可以支持批处理数据落盘能力

相互增强:OLAP能享有现有引擎的优势,同时也能增强引擎能力

  • 无统计信息场景的优化
  • 开发更高效的算子
  • 使Flink同时兼备流、批、OLAP处理的能力,成为更通用的框架

2. 性能优化

OLAP 对查询时间非常敏感,当前很多组件的性能不满足要求,因此我们对Flink做了很多相关优化。

① 服务架构的优化

客户端服务化

下图介绍了一条SQL怎么在客户端一步一步变为JobGraph,最终提交给JM:

在改动之前,每次接受一个query时会启动一个新的JVM进程来进行作业的编译。其中JVM的启动、Class的加载、代码的动态编译 ( 如Optimizer模块由于需要通过Janino动态编译进行cost计算 ) 等操作都非常耗时 ( 需要约3~5s )。因此,我们将客户端进行服务化,将整个Client做成Service,当接收到用户的query时,无需重复各项加载工作,可将延时降低至100ms 左右。

自定义CollectionTableSink

这部分优化,源于OLAP的一个特性:OLAP会将最终计算结果发给客户端,通过JobManager转发给Client。假如某个query的结果数据量很大,会让JobManager OOM ( OutOfMemory );如果同时执行多个query,也会相互影响。因此,我们从新实现了一个CollectionTableSink,限制数据的条数和数据大小,避免出现OOM,保证多个Query同时运行时的稳定性。

调度优化

在Batch模式下的调度存在以下问题:

  • 使用Lazy_from_sources模式调度,会导致整体运行时间较长,也可能造成死锁。 注:调度死锁是指在资源有限的情况下,多个Job同时运行时,如果多个Job都只申请到了部分资源并没有剩余资源可以申请,导致Job没法继续执行,新的Job也没法提交
  • RM ( Resource Manager ) 按OnDemand方式分配Slot需求,也会造成死锁
  • RM以单线程同步模式向TM ( Transaction Manager ) 分配Slot请求,会造成等待时间更长。

针对上述问题,我们提出了以下几点改动:

  • 采用Eager调度模式 ( 确保所有的资源都申请到后才开始运行 )
  • 使用FIFO ( 先进先出队 ) 模式申请资源 ( 确保当前Job的资源分配结束后才开始下一个Job的资源分配 )
  • 将单线程同步模式改为多线程异步模式,减少任务启动时间和执行时间

② 针对source的优化

在ROLAP的执行场景中,所有数据都是通过扫描原始数据表后进行处理;因此,基于Source的读取性能非常关键,直接影响Job的执行效率。

Project&Filter下堆

像Parquet这类的列存文件格式,支持按需读取相所需列,同时支持RowGroup级别的过滤。利用该特性,可以将Project和Filter下推到TableSource,从而只需要扫描Query中涉及的字段和满足条件的RowGroup,大大提升读取效率。

Aggregate下堆

这个优化也是充分利用了TableSource的特性:例如Parquet文件的metadata中已经存储了每个RowGroup的统计信息 ( 如 max、min等 ),因此在做max、min这类聚合统计时,可直接读取metadata信息,而不需要先读取所有原始数据再计算。

③ 在没有统计信息场景下做的优化

消除CrossJoin

CrossJoin是没有任何Join条件,将Join的两张表的数据做笛卡尔积,导致Join的结果膨胀非常厉害,这类Join应该尽量避免。我们对含有CrossJoin的Plan进行改写:将有join条件的表格先做join ( 通常会因为一些数据Join不上而减少数据 ),从而提高执行效率。这是一个确定性的改写,即使在没有统计信息的情况下,也可以使用该优化。

自适应的Local Aggregate

通常情况下,两阶段的Aggregate是非常高效的,因为LocalAggregate能聚合大量数据,导致Shuffle的数据量会变少。但是当LocalAggregate的聚合度很低的时候, Local聚合操作的意义不大,反而会浪费CPU。在没有任何统计信息的情况下,优化器没法决定是否要产生LocalAggregate算子;因此,我们采用运行时采样的方式来判断聚合度,如果聚合度低于设定的阈值,我们将关闭聚合操作,改为仅做数据转发;经我们测试,部分场景有30% 的性能提升。

3. 测试结果

上图是Flink和Presto基于1T数据做的SSB ( Star Schema Benchmark ) 测试,从图中可以看出 Flink和Presto整体上不相上下,甚至有些Query Flink性能优于Presto。注:Flink OLAP从开始到嘉宾分享时,只有3个月时间。

1. Apache Flink OLAP在数据探查上的应用

上图描述了一个数据湖应用的完整架构,Flink OLAP主要用于"数据探查"。数据探查是对数据结构做智能判断,给出数据的探查结果,快速了解数据的信息和质量情况。即用户可以在管控平台上了解数据湖中任意一份数据的数据特性。用户通过Web交互操作选择相应的表和指标后立即展示相关结果指标,因此要求低延迟、实时反馈。而且数据湖中很多数据没有任何统计信息;前述的各种查询、聚合层面的优化,主要为这类场景服务。

2. 整体架构

上图是这类应用的整体架构。整套服务托管到Kubernetes上,最终访问的数据是OSS;目前这套架构正在阿里云上做公测,邀请广大用户试用。

  • 推回社区:目前所有工作都是基于内部Flink,希望推回社区;
  • 资源隔离:后期很多功能的开发和优化会围绕多Query运行时的"资源隔离";
  • 优化&性能:围绕OLAP的特性,在此场景下会进一步做优化和性能提升等方面的工作。

本次的分享就到这里,谢谢大家。

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/LpjZQDjfqHqI4OlekH9j
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券