Kylin、Druid、ClickHouse核心技术对比

导读: Kylin、Druid、ClickHouse是目前主流的OLAP引擎,本文尝试从数据模型和索引结构两个角度,分析这几个引擎的核心技术,并做简单对比。在阅读本文之前希望能对Kylin、Druid、ClickHouse有所理解。

01 Kylin数据模型

Kylin的数据模型本质上是将二维表(Hive表)转换为Cube,然后将Cube存储到HBase表中,也就是两次转换。

第一次转换,其实就是传统数据库的Cube化,Cube由CuboId组成,下图每个节点都被称为一个CuboId,CuboId表示固定列的数据数据集合,比如“ AB” 两个维度组成的CuboId的数据集合等价于以下SQL的数据集合:

select A, B, sum(M), sum(N) from table group by A, B

第二次转换,是将Cube中的数据存储到HBase中,转换的时候CuboId和维度信息序列化到rowkey,度量列组成列簇。在转换的时候数据进行了预聚合。下图展示了Cube数据在HBase中的存储方式。

02 Kylin索引结构

因为Kylin将数据存储到HBase中,所以kylin的数据索引就是HBase的索引。HBase的索引是简化版本的B+树,相比于B+树,HFile没有对数据文件的更新操作。

HFile 的索引是按照 rowkey 排序的聚簇索引,索引树一般为二层或者三层,索引节点比 MySQL 的 B+ 树大,默认是 64KB。数据查找的时候通过树形结构定位到节点,节点内部数据是按照 rowkey 有序的,可以通过二分查找快速定位到目标。

Kylin 小结:适用于聚合查询场景;因为数据预聚合,Kylin 可以说是最快的查询引擎(group-by 查询这样的复杂查询,可能只需要扫描 1 条数据);kylin 查询效率取决于是否命中 CuboId,查询波动较大;HBase 索引有点类似 MySQL 中的联合索引,维度在 rowkey 中的排序和查询维度组合对查询效率影响巨大;所以 Kylin 建表需要业务专家参与。

03 Druid 数据模型

Druid 数据模型比较简单,它将数据进行预聚合,只不过预聚合的方式与 Kylin 不同,kylin 是 Cube 化,Druid 的预聚合方式是将所有维度进行 Group-by,可以参考下图:

04 Druid 索引结构

Druid 索引结构使用自定义的数据结构,整体上它是一种列式存储结构,每个列独立一个逻辑文件(实际上是一个物理文件,在物理文件内部标记了每个列的 start 和 offset)。对于维度列设计了索引,它的索引以 Bitmap 为核心。下图为“city”列的索引结构:

首先将该列所有的唯一值排序,并生成一个字典,然后对于每个唯一值生成一个 Bitmap,Bitmap 的长度为数据集的总行数,每个 bit 代表对应的行的数据是否是该值。Bitmap 的下标位置和行号是一一对应的,所以可以定位到度量列,Bitmap 可以说是反向索引。同时数据结构中保留了字典编码后的所有列值,其为正向的索引。

那么查询如何使用索引呢?以以下查询为例:

select site, sum(pv) from xx where date=2020-01-01 and city='bj' group by site
  1. city 列中二分查找 dictionary 并找到’bj’对应的 bitmap
  2. 遍历 city 列,对于每一个字典值对应的 bitmap 与’bj’的 bitmap 做与操作
  3. 每个相与后的 bitmap 即为 city='bj’查询条件下的 site 的一个 group 的 pv 的索引
  4. 通过索引在 pv 列中查找到相应的行,并做 agg
  5. 后续计算

Druid 小结:Druid 适用于聚合查询场景但是不适合有超高基维度的场景;存储全维度 group-by 后的数据,相当于只存储了 KYLIN Cube 的 Base-CuboID;每个维度都有创建索引,所以每个查询都很快,并且没有类似 KYLIN 的巨大的查询效率波动。

05 ClickHouse 索引结构 (只讨论 MergeTree 引擎)

因为 Clickhouse 数据模型就是普通二维表,这里不做介绍,只讨论索引结构。整体上 Clickhouse 的索引也是列式索引结构,每个列一个文件。Clickhouse 索引的大致思路是:首先选取部分列作为索引列,整个数据文件的数据按照索引列有序,这点类似 MySQL 的联合索引;其次将排序后的数据每隔 8192 行选取出一行,记录其索引值和序号,注意这里的序号不是行号,序号是从零开始并递增的,Clickhouse 中序号被称作 Mark’s number;然后对于每个列(索引列和非索引列),记录 Mark’s number 与对应行的数据的 offset。

下图中以一个二维表(date, city, action)为例介绍了整个索引结构,其中(date,city)是索引列。

那么查询如何使用索引呢?以以下查询为例:

select count(distinct action) where date=toDate(2020-01-01) and city=’bj’
  1. 二分查找 primary.idx 并找到对应的 mark’s number 集合(即数据 block 集合)
  2. 在上一步骤中的 block 中,在 date 和 city 列中查找对应的值的行号集合,并做交集,确认行号集合
  3. 将行号转换为 mark’s number 和 offset in block(注意这里的 offset 以行为单位而不是 byte)
  4. 在 action 列中,根据 mark’s number 和.mark 文件确认数据 block 在 bin 文件中的 offset,然后根据 offset in block 定位到具体的列值。
  5. 后续计算

该实例中包含了对于列的正反两个方向的查找过程。反向:查找 date=toDate(2020-01-01) and city=’bj’数据的行号;正向:根据行号查找 action 列的值。对于反向查找,只有在查找条件匹配最左前缀的时候,才能剪枝掉大量数据,其它时候并不高效。

Clickhouse 小结:MergeTree Family 作为主要引擎系列,其中包含适合明细数据的场景和适合聚合数据的场景;Clickhouse 的索引有点类似 MySQL 的联合索引,当查询前缀元组能命中的时候效率最高,可是一旦不能命中,几乎会扫描整个表,效率波动巨大;所以建表需要业务专家,这一点跟 kylin 类似。

06 小结

  • Kylin、Druid 只适合聚合场景,ClickHouse 适合明细和聚合场景
  • 聚合场景,查询效率排序:Kylin > Druid > ClickHouse
  • Kylin、ClickHouse 建表都需要业务专家参与
  • Kylin、ClickHouse 查询效率都可能产生巨大差异
  • ClickHouse 在向量化方面做得的最好,Druid 少量算子支持向量化、Kylin 目前还不支持向量化计算。

今天的分享就到这里,谢谢大家。

作者介绍

吴建超,9 年程序员一枚,目前专注于大数据处理和数据库技术。

本文来自 DataFunTalk

原文链接

Kylin、Druid、ClickHouse 核心技术对比

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/uFwbpmCF9BNxN38zkAXO
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券