深度学习人脸检测和识别系统 DFace

基于多任务卷积网络(MTCNN)和Center-Loss的多人实时人脸检测和人脸识别系统。

DFace 是个开源的深度学习人脸检测和人脸识别系统。所有功能都采用 pytorch 框架开发。pytorch是一个由facebook开发的深度学习框架,它包含了一些比较有趣的高级特性,例如自动求导,动态构图等。

DFace天然的继承了这些优点,使得它的训练过程可以更加简单方便,并且实现的代码可以更加清晰易懂。 DFace可以利用CUDA来支持GPU加速模式。我们建议尝试linux GPU这种模式,它几乎可以实现实时的效果。

MTCNN 结构

依赖

cuda 8.0

anaconda

pytorch

torchvision

cv2

matplotlib

在这里我提供了一个anaconda的环境依赖文件environment.yml,它能方便你构建自己的虚拟环境。

conda env create -f path/to/environment.yml

训练mtcnn模型

MTCNN主要有三个网络,叫做PNet, RNet 和 ONet。因此我们的训练过程也需要分三步先后进行。为了更好的实现效果,当前被训练的网络都将依赖于上一个训练好的网络来生成数据。所有的人脸数据集都来自 WIDER FACE和CelebA。WIDER FACE仅提供了大量的人脸边框定位数据,而CelebA包含了人脸关键点定位数据。

生成PNet训练数据和标注文件

python src/prepare_data/gen_Pnet_train_data.py --dataset_path --anno_file

乱序合并标注文件

python src/prepare_data/assemble_pnet_imglist.py

训练PNet模型

python src/train_net/train_p_net.py

生成RNet训练数据和标注文件

python src/prepare_data/gen_Rnet_train_data.py --dataset_path --anno_file --pmodel_file

乱序合并标注文件

python src/prepare_data/assemble_rnet_imglist.py

训练RNet模型

python src/train_net/train_r_net.py

生成ONet训练数据和标注文件

python src/prepare_data/gen_Onet_train_data.py --dataset_path --anno_file --pmodel_file --rmodel_file

生成ONet的人脸关键点训练数据和标注文件

python src/prepare_data/gen_landmark_48.py

乱序合并标注文件(包括人脸关键点)

python src/prepare_data/assemble_onet_imglist.py

训练ONet模型

python src/train_net/train_o_net.py

  • 发表于:
  • 原文链接:http://kuaibao.qq.com/s/20171209B040I900?refer=cp_1026

扫码关注云+社区