控制台指南

最佳实践

开发者指南

数据湖存储

API 文档

SDK 文档

文档捉虫大赛火热进行中,好礼多多> HOT
文档中心 > 对象存储 > 数据湖存储 > 元数据加速器 > 在 CDH 集群上通过 HDFS 协议访问 COS

简介

CDH(Cloudera's Distribution, including Apache Hadoop)是业界流行的 Hadoop 发行版本。本文指导如何在 CDH 环境下通过 HDFS 协议访问对象存储(Cloud Object Storage,COS)存储桶,以实现大数据计算与存储分离,提供灵活及低成本的大数据解决方案。

注意:

通过 HDFS 协议访问 COS 存储桶,需要先开启元数据加速能力。

当前 COS 对大数据组件支持情况如下:

组件名称 CHDFS 大数据组件支持情况 服务组件是否需要重启
Yarn 支持 重启 NodeManager
Yarn 支持 重启 NodeManager
Hive 支持 重启 HiveServer 及 HiveMetastore
Spark 支持 重启 NodeManager
Sqoop 支持 重启 NodeManager
Presto 支持 重启 HiveServer 及 HiveMetastore 和 Presto
Flink 支持
Impala 支持
EMR 支持
自建组件 后续支持
HBase 不推荐

版本依赖

本文依赖的组件版本如下:

  • CDH 5.16.1
  • Hadoop 2.6.0

使用方法

存储环境配置

  1. 登录 CDH 管理页面。
  2. 在系统主页,选择配置 > 服务范围 > 高级,进入高级配置代码段页面,如下图所示:
  3. Cluster-wide Advanced Configuration Snippet(Safety Valve) for core-site.xml 的代码框中,填入 COS 大数据服务配置。
    <property>
    <name>fs.AbstractFileSystem.ofs.impl</name>
    <value>com.qcloud.chdfs.fs.CHDFSDelegateFSAdapter</value>
    </property>
    <property>
    <name>fs.ofs.impl</name>
    <value>com.qcloud.chdfs.fs.CHDFSHadoopFileSystemAdapter</value>
    </property>
    <!--本地 cache 的临时目录, 对于读写数据, 当内存 cache 不足时会写入本地硬盘, 这个路径若不存在会自动创建-->
    <property>
    <name>fs.ofs.tmp.cache.dir</name>
    <value>/data/emr/hdfs/tmp/chdfs/</value>
    </property>
    <!--appId-->      
    <property>
    <name>fs.ofs.user.appid</name>
    <value>1250000000</value>
    </property>
    以下为必选的配置项(需添加到 core-site.xml 中),其他配置可参见 在计算集群中挂载 COS 存储桶
    配置项 含义
    fs.ofs.user.appid 1250000000 用户 appid
    fs.ofs.tmp.cache.dir /data/emr/hdfs/tmp/chdfs/ 本地 cache 的临时目录
    fs.ofs.impl com.qcloud.chdfs.fs.CHDFSHadoopFileSystemAdapter chdfs 对 FileSystem 的实现类,固定为 com.qcloud.chdfs.fs.CHDFSHadoopFileSystemAdapter
    fs.AbstractFileSystem.ofs.impl com.qcloud.chdfs.fs.CHDFSDelegateFSAdapter chdfs 对 AbstractFileSystem 的实现类,固定为 com.qcloud.chdfs.fs.CHDFSDelegateFSAdapter
  4. 对 HDFS 服务进行操作,单击部署客户端配置,此时以上 core-site.xml 配置会更新到集群里的机器上。
  5. 将最新的 客户端安装包 放置到 CDH HDFS 服务的 jar 包路径下,请根据实际值进行替换,示例如下:
    cp chdfs_hadoop_plugin_network-2.0.jar /opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/hadoop-hdfs/
    注意:

    在集群中的每台机器都需要在相同的位置放置 SDK 包。

数据迁移

使用 Hadoop Distcp 工具将 CDH HDFS 数据迁移到 COS 存储桶中,详情请参见 Hadoop 文件系统与 COS 之间的数据迁移

大数据套件使用 CHDFS

MapReduce

操作步骤

  1. 按照 数据迁移 章节,配置好 HDFS 的相关配置,并将 COS 的 客户端安装包,放置到 HDFS 相应的目录。
  2. 在 CDH 系统主页,找到 YARN,重启 NodeManager 服务(TeraGen 命令可以不用重启,但是 TeraSort 由于业务内部逻辑,需要重启 NodeManger,建议都统一重启 NodeManager 服务)。

示例

下面以 Hadoop 标准测试中的 TeraGen 和 TeraSort 为例:

hadoop jar ./hadoop-mapreduce-examples-2.7.3.jar teragen -Dmapred.map.tasks=4 1099 ofs://examplebucket-1250000000/teragen_5/

hadoop jar ./hadoop-mapreduce-examples-2.7.3.jar terasort  -Dmapred.map.tasks=4 ofs://examplebucket-1250000000/teragen_5/ ofs://examplebucket-1250000000/result14

说明:

ofs:// schema后面请替换为用户 CHDFS 的挂载点路径。

Hive

MR 引擎

操作步骤

  1. 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将COS 的 客户端安装包,放置到 HDFS 相应的目录。
  2. 在 CDH 主页面,找到 HIVE 服务, 重启 Hiveserver2 及 HiverMetastore 角色。

示例

某用户的真实业务查询,例如执行 Hive 命令行,创建一个 Location,作为在 CHDFS 上的分区表:

CREATE TABLE `report.report_o2o_pid_credit_detail_grant_daily`(
  `cal_dt` string,
  `change_time` string,
  `merchant_id` bigint,
  `store_id` bigint,
  `store_name` string,
  `wid` string,
  `member_id` bigint,
  `meber_card` string,
  `nickname` string,
  `name` string,
  `gender` string,
  `birthday` string,
  `city` string,
  `mobile` string,
  `credit_grant` bigint,
  `change_reason` string,
  `available_point` bigint,
  `date_time` string,
  `channel_type` bigint,
  `point_flow_id` bigint)
PARTITIONED BY (
  `topicdate` string)
ROW FORMAT SERDE
  'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
    OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
  'ofs://examplebucket-1250000000/user/hive/warehouse/report.db/report_o2o_pid_credit_detail_grant_daily'
TBLPROPERTIES (
  'last_modified_by'='work',
  'last_modified_time'='1589310646',
  'transient_lastDdlTime'='1589310646')
执行 SQL 查询:
select count(1) from report.report_o2o_pid_credit_detail_grant_daily;
观察结果如下:

Tez 引擎

Tez 引擎需要将 COS 的 客户端安装包导入到 Tez 的压缩包内,下面以 apache-tez.0.8.5 为例进行说明:

操作步骤

  1. 找到 CDH 集群安装的 tez 包,然后解压,例如/usr/local/service/tez/tez-0.8.5.tar.gz。
  2. 将 COS 的 客户端安装包放置到解压后的目录下,然后重新压缩输出一个压缩包。
  3. 将新的压缩包上传到 tez.lib.uris 指定的路径下(如果之前存在路径则直接替换即可)。
  4. 在 CDH 主页面,找到 HIVE,重启 hiveserver 和 hivemetastore。

Spark

操作步骤

  1. 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将 COS 的 客户端安装包,放置到 HDFS 相应的目录。
  2. 重启 NodeManager 服务。

示例

以进行 Spark example word count 测试为例。

spark-submit  --class org.apache.spark.examples.JavaWordCount --executor-memory 4g --executor-cores 4  ./spark-examples-1.6.0-cdh5.16.1-hadoop2.6.0-cdh5.16.1.jar ofs://examplebucket-1250000000/wordcount
执行结果如下:

Sqoop

操作步骤

  1. 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将 COS 的 客户端安装包,放置到 HDFS 相应的目录。
  2. COS 的 客户端安装包还需要放到 sqoop 目录下(例如/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/sqoop/)。
  3. 重启 NodeManager 服务。

示例

以导出 MYSQL 表到 COS 为例,可参考 关系型数据库和 HDFS 的导入导出 文档进行测试。

sqoop import --connect "jdbc:mysql://IP:PORT/mysql" --table sqoop_test --username root --password 123  --target-dir ofs://examplebucket-1250000000/sqoop_test
执行结果如下:

Presto

操作步骤

  1. 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将 COS 的 客户端安装包,放置到 HDFS 相应的目录。
  2. COS 的 客户端安装包还需要放到 presto 目录下(例如/usr/local/services/cos_presto/plugin/hive-hadoop2)。
  3. 由于 presto 不会加载 hadoop common 下的 gson-2...jar,需将 gson-2...jar 也放到 presto 目录下(例如 /usr/local/services/cos_presto/plugin/hive-hadoop2,仅 COS 依赖 gson)。
  4. 重启 HiveServer、HiveMetaStore 和 Presto 服务。

示例

以 HIVE 创建 Location 为 COS 的表查询为例:

select * from chdfs_test_table where bucket is not null limit 1;

说明:

chdfs_test_table 为 location 是 ofs scheme 的表。

查询结果如下:

目录