ATmega8仿真——键盘扫描的学习

1.按键的使用特点

  按键的应用主要是在按键闭合时改变电路的电平,但是一般情况下按键的开关都是机械弹性触点开关,即利用触点的接触和分离来实现电路的通断,所以在按键按下和释放时往往会产生抖动干扰。

消除抖动干扰的两种方式:

  (1)硬件设计:硬件消抖要在硬件设计上增加消抖电路,如用R-S触发器等,这样就会增加系统成本。

  (2)软件设计:在软件中对按键进行二次测试确认,即当第一次检测到按键被按下后,间隔10 毫秒左右再次检测该按键是否被按下,只有两次都册到按键按下时才确认该按键被按下了,从而消除抖动干扰。

2.单键盘扫描应用

用PB口接一个LED数码管,来显示按下按键的次数;

用PC0端口接一个按键电路;

  实现的功能是每一次按键,LED数码管显示的数据加1,到9回0。

 1 #include <iom8v.h>
 2 #include "Delay.h"
 3 /**
 4   *PB口:连接一个LED数码管
 5   *PC0:连接一个按键电路,按下呈低电平
 6   *
 7   */
 8 unsigned char CountNum; //全局变量,用来计数
 9 
10 //按键扫描函数
11 void ScanKey(void)
12 {
13     unsigned char key;
14     
15     key = PINC; //检测按键状态
16     if(0x01 == key) //未按下,退出
17         return;
18     delay_ms(10);
19     
20     key = PINC;  //再次检测,防抖动
21     if(0x01 == key) //未按下,退出
22         return;
23     CountNum++;
24     while(0 == key&0x01) //等到按键释放
25         key = PINC;
26 }
27 
28 //主函数,扫描按键显示数据
29 void main()
30 {
31     unsigned char num[10] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
32     //初始化端口
33     DDRB = 0xFF; //设置B口为输出模式
34     PORTB = 0xFF; //置高电平
35     DDRC = 0x00; //设置C口为输入模式
36     
37     CountNum = 0; //初始化全局变量
38     while(1)
39     {
40         ScanKey(); //扫描按键
41         if(CountNum >= 10)
42             CountNum -= 10;
43         PORTB = num[CountNum];
44     }
45 }
46 
47 //按键长按的情况
48 void ScanKey_Long(void)
49 {
50     unsigned char key;
51     
52     key = PINC; //检测按键状态
53     if(0x01 == key) //未按下,退出
54         return;
55     delay_ms(10);
56     
57     key = PINC;  //再次检测,防抖动
58     if(0x01 == key) //未按下,退出
59         return;
60         
61     while(0x00 == key) //按键长按,不断加加
62     {
63         CountNum++;
64         key = PINC;
65     }
66 }

 问:上面的程序没有考虑长按的情况,如果向我们使用的键盘一样,长时间按下一个按键,在屏幕上就不断的打印该字符,在这个例子里怎样实现:若长时间按下按键,CountNum就不断加加?

答:只需要更改ScanKey函数,更改结果如下

 1 //按键长按的情况
 2 void ScanKey_Long(void)
 3 {
 4     unsigned char key;
 5     
 6     key = PINC; //检测按键状态
 7     if(0x01 == key) //未按下,退出
 8         return;
 9     delay_ms(10);
10     
11     key = PINC;  //再次检测,防抖动
12     if(0x01 == key) //未按下,退出
13         return;
14         
15     while(0x00 == key) //按键长按,不断加加
16     {
17         CountNum++;
18         key = PINC;
19     }
20 }

3.矩阵按键(键盘)扫描的应用

  按键太多的情况下,为了节省I/O资源,通常采用矩阵式的接口。矩阵键盘由行和列组成,每个键都有它的行值和列值,行值和列值的组合就是识别每个键盘的编码。

确定是哪个按键的流程:(???)

(1)在行和列的一个口中输出高电平,在另一个行列口读取一个扫描码;

(2)在后一个行列口中输出高电平,在前一行列口读取第二个扫描码;

(3)查表确定哪个按键被按下。

电路图如下:

程序实现步骤:

(1)确定有无按键按下;

(2)确定是哪个按键;

(3)返回该按键值或处理对应的任务;

(4)再加上,考虑抖动消除,等待按键的断开。

要实现每按下一个按键,就在LED数码管显示出该按键对应的值,按键断开后或默认显示“-”:

  1 #include <iom8v.h>
  2 #include "Delay.h"
  3 /**
  4   *PB口:连接一个LED数码管
  5   *PC0-PC5:连接9个按键电路,按下呈低电平
  6   *        PC0-PC2:按键的行
  7   *        PC3-PC5:按键的列
  8   *
  9   *1:确定有无按键按下,main函数两次判断实现;
 10   *2:确定是哪个按键,ScanKey函数实现;
 11   *3:返回该键值或处理对应的任务,main函数中处理。
 12   */
 13   
 14 
 15 //按键扫描函数,确定是哪个按键,返回按键的值
 16 unsigned char ScanKey(void)
 17 {
 18     unsigned char tempH,tempL,key;
 19     
 20     tempH = PINC & 0x07; //取PC0-PC2用于判断行
 21     switch (tempH)
 22     {
 23         case 0x06:
 24             DDRC = 0x07; PORTC = 0x38;//将PC3-PC5(列)置为输入模式
 25             delay_us(1);
 26             tempL = PINC & 0x38; //取PC3-PC5用于判断列
 27             switch (tempL)
 28             {
 29                 case 0x30: key = 0x01; //得到键值
 30                     break;
 31                 case 0x28: key = 0x02;
 32                     break;
 33                 case 0x18: key = 0x03;
 34                     break;
 35                 default:   key = 0;
 36                     break;
 37             }
 38             DDRC = 0x38; PORTC = 0x07;//输入完毕恢复默认输出模式
 39             break;
 40             
 41         case 0x05:
 42             DDRC = 0x07; PORTC = 0x38;//将PC3-PC5(列)置为输入模式
 43             delay_us(1);
 44             tempL = PINC & 0x38; //取PC3-PC5用于判断列
 45             switch (tempL)
 46             {
 47                 case 0x30: key = 0x04; //得到键值
 48                     break;
 49                 case 0x28: key = 0x05;
 50                     break;
 51                 case 0x18: key = 0x06;
 52                     break;
 53                 default:   key = 0;
 54                     break;
 55             }
 56             DDRC = 0x38; PORTC = 0x07;//输入完毕恢复默认输出模式
 57             break;
 58             
 59         case 0x03:
 60             DDRC = 0x07; PORTC = 0x38;//将PC3-PC5(列)置为输入模式
 61             delay_us(1);
 62             tempL = PINC & 0x38; //取PC3-PC5用于判断列
 63             switch (tempL)
 64             {
 65                 case 0x30: key = 0x07; //得到键值
 66                     break;
 67                 case 0x28: key = 0x08;
 68                     break;
 69                 case 0x18: key = 0x09;
 70                     break;
 71                 default:   key = 0;
 72                     break;
 73             }
 74             DDRC = 0x38; PORTC = 0x07;//输入完毕恢复默认输出模式
 75             break;
 76             
 77         default:
 78             key = 0;
 79             break;
 80     }
 81     return (key);
 82     
 83 }
 84 
 85 //主函数,扫描按键显示数据
 86 void main()
 87 {
 88     unsigned char temp,keynum;
 89     unsigned char num[10] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
 90     //初始化端口
 91     DDRB = 0xFF; //设置B口为输出模式
 92     PORTB = 0xFF; //置高电平
 93         //将PC0-PC2(行)置为输入模式
 94     DDRC = 0x38;
 95     PORTC = 0x07;
 96     
 97     while(1) //两次检测行中有没有按下
 98     {
 99         PORTC = 0x40; //没有按键时,LED默认显示-
100         //第一次检验
101         temp = PINC & 0x07;
102         if(0x07 == temp)
103             continue;
104         delay_ms(10);
105         //第二次检验
106         temp = PINC & 0x07;
107         if(0x07 == temp)
108             continue;
109         
110         //有按下,LED显示键值
111         keynum = ScanKey();
112         PORTB = num[keynum];
113         //等到按键被释放
114         while(0x07 != temp)
115             temp = PINC & 0x07;
116     }
117 }

代码总结:

  主函数:判断是否有按键按下,并消除抖动干扰,若有则将获得的键值显示在LED数码管中;

  ScanKey函数:得到扫描码确定是哪个按键,等待按键释放,返回该按键的值。

方法扩展:

(1)除了像上面的对按键的接口不停的扫描,

(2)还可以使用定时扫描,例如用一个定时器,每隔10MS 对按键接口进行扫描,看是否有按键按下;

(3)也可以使用中断的方式去扫描,当按键按下时由硬件电路产生一个中断,MCU 响应该中断,确定哪个按键被按下,处理相应函数。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏前端知识分享

第134天:移动web开发的一些总结(二)

width —— 视口宽高 height —— 视口宽高 device-width —— 设备的宽高 device- height —— 设备的宽高 orien...

951
来自专栏42度空间

【基础】EM 还是 REM?这是一个问题!

应用象EM 和 REM这种相对长度单位进行页面排版是WEB开发中的最佳实践。在页面排版中较好应用EM 和 REM,根据设备尺寸缩放显示元素的大小。这就使得组件在...

35313
来自专栏jianhuicode

带着问题写React Native原生控件--Android视频直播控件

最近在做的采用React Native项目有一个需求,视频直播与直播流播放同一个布局中,带着问题去思考如何实现,能更容易找到问题关键点,下面分析这个控件解决方法...

1.2K7
来自专栏知晓程序

开发 | 小程序做动画效果难?送你一个框架,10 分钟就能搞定

在小程序中使用 canvas 绘制图案、动画的难度有目共睹。除了本身写法繁琐,小程序的技术特性,也使得小程序无法使用普通 HTML 5 的 canvas 框架,...

1275
来自专栏何俊林

流媒体解码及H.264编码推流

3055
来自专栏小狼的世界

IE6下实现Width:auto

看了这个题目,很多人肯定觉得有点太老土了,IE6都快到末路了,不过这个方法确实非常经典,我觉得很有必要记下一笔。

612
来自专栏陈泽钦的专栏

页面性能优化的利器 — Timeline

网页中的重绘过程是影响整体性能下降的关键点之一,因而网站开发者应该更多地去避免在站点中进行不必要以及不适时的重绘步骤,本文主要讲述如何借助Inspector中的...

1.9K1
来自专栏用户2442861的专栏

CSS中height:100%和height:inherit的异同

2. 大多数情况作用是一样的 除去兼容性,大多数情况下,两者作用是一样的,甚至都很难想出不一样的理由。

601
来自专栏双十二技术哥

Android性能优化(二)之布局优化面面观

通过《Android性能优化(一)之启动加速35%》我们获得了闪电般的App启动速度,那么在应用启动完毕之后,UI布局也会对App的性能产生比较大的影响,如果布...

643
来自专栏青枫的专栏

day03_js学习笔记_03_js的事件、js的BOM、js的DOM

461

扫码关注云+社区