ECC检验与纠错

引入ECC

  ECC:Error Checking and Correction,是一种差错检测和修正的算法。

  NAND闪存在生产和使用中都会有坏块产生,BBM就是坏块的管理机制。而生产坏块已经无法避免,我们只能尽全力减少使用中产生的坏块。一种是利用磨损平衡(WL)提前预防坏块产生,另一种是已经产生“坏块”,我们是否还能继续用?

  因此引入了ECC,如果块产生错误,且能够被ECC纠正,那么这个块都不算坏块;但连ECC都纠正不过来,这个块就无法再继续使用,只能标记为坏块。

  所以,有效管理坏块的首要前提就是有可靠的坏块检测手段。如果操作时序和电路稳定性不存在问题,NAND闪存出错的时候一般不会造成整个Block或Page不能读取甚至全部出错,而是整个Page中只有一个或几个bit出错,这时候 ECC就能发挥作用了。不同颗粒有不同的基本ECC要求,不同主控制器支持的ECC能力也不同,理论上来说ECC能力够用就行。

ECC工作原理

1、当前SSD内最普遍使用的ECC码是BCH码。

(1)数据写入时:控制器内部的ECC模块计算数据并生成ECC签名,一般来说这个步骤非常快,因此并不会影响整个SSD太多的性能表现。

(2)ECC的保存:ECC的签名一般来说都保存在NAND页后部的SA区域。

(3)数据从NAND读取时:ECC模块回去读取ECC签名,并对照相同与否来发现出现的错误。

2、 相比发现错误,修复接收到的数据错误更复杂。

(1)检测收到的数据是否出错,这个和上面生成ECC签名的操作一样非常快。

(2)如果检测到接收到的数据包含错误比特,就需要去生成独特的ECC算法(比如BCH),这部分会造成性能损失,但是只有在检测到错误时候才做。

(3)用生成的ECC算法来修复之前检测到的错误。

ECC的能力

       必须强调的是,ECC解码过程是可能出现失败的,所以ECC系统架构必须合理的设计才能保证ECC不出错,而ECC能够修复的错误比特数取决于ECC算法设计。

       如果ECC纠不过来, 一般会报ECC Fail, 用户表现为Read Fail,有时候ECC甚至诊测不到出错, 就会导致数据错误。 

       NAND的稳定性需要有多方面保障,ECC只能用来保证部分比特出错时的修复,如果整个页甚至块出现大面积错误,那么只有RAID这类的冗余保护才能修复了。

       在企业级产品中对ECC甚至还有更苛刻的要求,那就是数据完整性检查,SSD内部所有的总线, 先进先出数据缓存器部分都要查,可以检测数据在进入NAND之前的错误。

实例剖析ECC

  NAND Flash因为可能存在坏块,所以一定会有spare区了。page分为main和spare区。main是用来保存数据的。spare区一般用来标记坏块,和保存对main区数据的ECC校验码。

  至于spare 区的格式,这个由自己设定,没有标准格式的。如“LSN0 LSN1 LSN2 RESERVED RESERVED BI ECC0 ECC1 ECC2 S-ECC0 S-ECC1 RESERVED RESERVED RESERVED RESERVED RESERVED”也是其中一种。

       上图是个4KB页的NAND闪存(SA区64字节) (1)每当一个page写入NAND闪存,数据会通过ECC引擎,创造独特的ECC签名。 (2)数据和对应的ECC签名存都存放在NAND闪存里,数据放在数据区,ECC签名放在SA区。 (3)当需要读取数据时,数据和ECC签名一起被送往主控制器,此时新的ECC签名被生成。 (4)此时主控把2个签名对照,如果签名相同,说明数据没有错误,数据就会被送往主机。如果签名不同,数据就会先放在主控里,而不是直接送往主机。

       某些主控会把改正后的数据再次写回闪存,另一些则不会,因为谁也不知道下次读取会不会再出错。

ECC评价

       ECC的能力也影响到NAND 闪存的寿命和数据保存期。当NAND闪存的标称P/E数到了之后,错误数会越来越多,ECC弱的直接就报坏块并标记退休,如果ECC能力足够强,能挖掘出Flash更多潜力,只是效果比较有限。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏开源优测

大数据测试之ETL测试入门

概述 在我们学习ETL测试之前,先了解下business intelligence(即BI)和数据仓库。 什么是BI? BI(Business Intell...

5218
来自专栏大数据和云计算技术

大数据和云计算技术周报(第60期)

“大数据” 三个字其实是个marketing语言,从技术角度看,包含范围很广,计算、存储、网络都涉及,知识点广、学习难度高。

1021
来自专栏腾讯数据中心

微软LES供电架构介绍(下)

接上篇,我们将继续为您介绍微软LES供电架构 ? 图6 LES电源的各个指标介绍 如图6所示的LES分布式供电架构的一些主要规格是: 1、满足35秒满载备电时...

3299
来自专栏媒矿工厂

媒体容器新标准—CMAF

1. 视频流量持续走高 随着移动互联网的快速发展,数据流量呈现出爆发式的增长,互联网传输的视频流量也呈爆炸性增长,预计未来几年将持续增长。根据2017年思科预测...

4947
来自专栏开源优测

[大数据测试]ETL测试或数据仓库测试入门

概述 在我们学习ETL测试之前,先了解下business intelligence(即BI)和数据仓库。 什么是BI? BI(Business Intell...

3026
来自专栏机器人网

无人机开发-图传技术浅析

无人机能够一跃进入大众视野,并迅速在大众市场火热发展,是很多人始料未及的。从刚开始的空中摄录,到后来的实时摄录,方便的无人机图传功能无疑为无人机加足了筹码,赚足...

872
来自专栏机器人网

伺服控制智能助力机械手系统功能分析

随着现代化工业生产的不断发展,工业机器人得到广泛应用,但受成本和功能限制还不能独立完成所有的物料搬运工作,大量的物料搬运工作仍需要人来完成。如何降低工人的劳动强...

2676
来自专栏嵌入式程序猿

不按标准引发的bug

我们曾经在初级和中级培训中给大家详细讲解了Modbus通讯的开发,并多次强调了一定要按照标准协议的要求编写Modbus驱动程序,可是现实中仍然有很多工程师不按照...

2628
来自专栏Python中文社区

用Django实现一个可运行的区块链应用

对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。 但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更...

4255
来自专栏linux驱动个人学习

NC和NO、耳机美标和欧标的区别

NO是常开(NORMAL OPEN),就是通常即未通电状态下,是断开的,通电后在电磁线圈的作用下(吸合)处于闭合状态。NC是常闭(NORMAL CLOSE),就...

3336

扫码关注云+社区