前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >caffe随记(五)---/build/tools/caffe.bin工具简析

caffe随记(五)---/build/tools/caffe.bin工具简析

作者头像
TeeyoHuang
发布2017-12-28 14:19:34
1.6K0
发布2017-12-28 14:19:34
举报

1、怎么用这个命令

在caffe根目录下输入如下命令:

 ./build/tools/caffe.bin, 得到如下显示

usage:caffe<command><args>

# 这个是告诉你使用格式, caffe 后接上 一个command命令,后面再接其他参数

commands: #你能选择的命令有一下这么几种

train #训练或者微调一个模型

test  #对一个模型打分

device—query #显示GPU诊断信息

time #评估模型执行时间

Flags form tools/caffe.cpp   #其他一些参数的总览

-gpu         (可选;给定时运行GPU模式,用’ , ’分隔开不同的gpu,

                     ‘-gpu all’表示运行在所有可用的gpu设备上,此时有效训练批量大小就是gpu设备数乘以batch_size)

-iterations (循环迭代次数,默认为50)

-level          (可选;定义网络水平,也是NetState中的一个,但我也还不清楚这个的作用)

-model        (指定模型定义文本文件名,xxx.prototxt)

-phase        (可选;网络是处于TEST还是TRAIN阶段,当你使用command中time命令时,再指定phase就可以选择计算TEST或者TRAIN的耗时)

-sighup_effect (可选;当收到SIGHUP信号时要采取的动作,可选项:snapshot、stop、none,默认为snapshot,即打印快照)

-sigint_effect (可选;当收到当收到SIGINT信号时要采取的动作,可选项同上,默认stop)

-snapshot (可选,恢复训练时指定上次中止的快照,就是比如训练到一般按Ctrl+C终止训练(Linux中这个Ctrl+C不是copy,而是终止当前操作),就会得到一个solverstate                        文件,下次恢复训练时就可以指定这个)

-solver       ( 指定sovler.prototxt文件,在train的时候需要这个参数)

-stage        (可选;也是NetState中的一个,但我也还不清楚这个的作用)

-weights    ( 指定用于微调的预训练权值,也即 训练后得到的**.caffemodel文件,不可与snapshot同时出现)

2、caffe.cpp源文件

注:这个文件的内容有些多,我也只是选择性的阅读并注释了部分。

代码语言:javascript
复制
#ifdef WITH_PYTHON_LAYER
#include "boost/python.hpp"
namespace bp = boost::python;
#endif

#include <gflags/gflags.h>
#include <glog/logging.h>

#include <cstring>
#include <map>
#include <string>
#include <vector>

#include "boost/algorithm/string.hpp"
#include "caffe/caffe.hpp"
#include "caffe/util/signal_handler.h"

using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::Solver;
using caffe::shared_ptr;
using caffe::string;
using caffe::Timer;
using caffe::vector;
using std::ostringstream;

DEFINE_string(gpu, "",
    "Optional; run in GPU mode on given device IDs separated by ','."
    "Use '-gpu all' to run on all available GPUs. The effective training "
    "batch size is multiplied by the number of devices.");
DEFINE_string(solver, "",
    "The solver definition protocol buffer text file.");
DEFINE_string(model, "",
    "The model definition protocol buffer text file.");
DEFINE_string(phase, "",
    "Optional; network phase (TRAIN or TEST). Only used for 'time'.");
DEFINE_int32(level, 0,
    "Optional; network level.");
DEFINE_string(stage, "",
    "Optional; network stages (not to be confused with phase), "
    "separated by ','.");
DEFINE_string(snapshot, "",
    "Optional; the snapshot solver state to resume training.");
DEFINE_string(weights, "",
    "Optional; the pretrained weights to initialize finetuning, "
    "separated by ','. Cannot be set simultaneously with snapshot.");
DEFINE_int32(iterations, 50,
    "The number of iterations to run.");
DEFINE_string(sigint_effect, "stop",
             "Optional; action to take when a SIGINT signal is received: "
              "snapshot, stop or none.");
DEFINE_string(sighup_effect, "snapshot",
             "Optional; action to take when a SIGHUP signal is received: "
             "snapshot, stop or none.");

// A simple registry for caffe commands.
typedef int (*BrewFunction)();
typedef std::map<caffe::string, BrewFunction> BrewMap;
BrewMap g_brew_map;

#define RegisterBrewFunction(func) \
namespace { \
class __Registerer_##func { \
 public: /* NOLINT */ \
  __Registerer_##func() { \
    g_brew_map[#func] = &func; \
  } \
}; \
__Registerer_##func g_registerer_##func; \
}

static BrewFunction GetBrewFunction(const caffe::string& name) {
  if (g_brew_map.count(name)) {
    return g_brew_map[name];
  } else {
    LOG(ERROR) << "Available caffe actions:";
    for (BrewMap::iterator it = g_brew_map.begin();
         it != g_brew_map.end(); ++it) {
      LOG(ERROR) << "\t" << it->first;
    }
    LOG(FATAL) << "Unknown action: " << name;
    return NULL;  // not reachable, just to suppress old compiler warnings.
  }
}

// Parse GPU ids or use all available devices #解析GPU id,或者使用所有可用的GPU
static void get_gpus(vector<int>* gpus) {
  if (FLAGS_gpu == "all") {
    int count = 0;
#ifndef CPU_ONLY
    CUDA_CHECK(cudaGetDeviceCount(&count));
#else
    NO_GPU;
#endif
    for (int i = 0; i < count; ++i) {
      gpus->push_back(i);
    }
  } else if (FLAGS_gpu.size()) {
    vector<string> strings;
    boost::split(strings, FLAGS_gpu, boost::is_any_of(","));
    for (int i = 0; i < strings.size(); ++i) {
      gpus->push_back(boost::lexical_cast<int>(strings[i]));
    }
  } else {
    CHECK_EQ(gpus->size(), 0);
  }
}

// Parse phase from flags
caffe::Phase get_phase_from_flags(caffe::Phase default_value) {
  if (FLAGS_phase == "")
    return default_value;
  if (FLAGS_phase == "TRAIN")
    return caffe::TRAIN;
  if (FLAGS_phase == "TEST")
    return caffe::TEST;
  LOG(FATAL) << "phase must be \"TRAIN\" or \"TEST\"";
  return caffe::TRAIN;  // Avoid warning
}

// Parse stages from flags
vector<string> get_stages_from_flags() {
  vector<string> stages;
  boost::split(stages, FLAGS_stage, boost::is_any_of(","));
  return stages;
}

// caffe commands to call by    ##caffe的命令格式
//     caffe <command> <args>
//
// To add a command, define a function "int command()" and register it with
// RegisterBrewFunction(action);

// Device Query: show diagnostic information for a GPU device.
int device_query() {
  LOG(INFO) << "Querying GPUs " << FLAGS_gpu;
  vector<int> gpus;
  get_gpus(&gpus);
  for (int i = 0; i < gpus.size(); ++i) {
    caffe::Caffe::SetDevice(gpus[i]);
    caffe::Caffe::DeviceQuery();
  }
  return 0;
}
RegisterBrewFunction(device_query);

// Load the weights from the specified caffemodel(s) into the train and
// test nets.
// ##从指定的caffemodel中向训练、预测网络载入训练过的权值。
void CopyLayers(caffe::Solver<float>* solver, const std::string& model_list) {
  std::vector<std::string> model_names;
  boost::split(model_names, model_list, boost::is_any_of(",") );
  for (int i = 0; i < model_names.size(); ++i) {
    LOG(INFO) << "Finetuning from " << model_names[i];
    solver->net()->CopyTrainedLayersFrom(model_names[i]);
    for (int j = 0; j < solver->test_nets().size(); ++j) {
      solver->test_nets()[j]->CopyTrainedLayersFrom(model_names[i]);
    }
  }
}

// Translate the signal effect the user specified on the command-line to the
// corresponding enumeration.
// ##将用户在命令行上指定的信号效果转换为相应的枚举
caffe::SolverAction::Enum GetRequestedAction(
    const std::string& flag_value) {
  if (flag_value == "stop") {
    return caffe::SolverAction::STOP;
  }
  if (flag_value == "snapshot") {
    return caffe::SolverAction::SNAPSHOT;
  }
  if (flag_value == "none") {
    return caffe::SolverAction::NONE;
  }
  LOG(FATAL) << "Invalid signal effect \""<< flag_value << "\" was specified";
  return caffe::SolverAction::NONE;
}

//======================================== 训练/微调 模型 ===========================================//
// Train / Finetune a model.
int train() {
  CHECK_GT(FLAGS_solver.size(), 0) << "Need a solver definition to train."; //检查用户是否传入solver文件
  CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())                    //检查参数里面--weights和--snapshot有没有同时出现
      << "Give a snapshot to resume training or weights to finetune "       //因为--weights是在从头启动训练的时候需要的参数,表示对模型的finetune,
      "but not both.";                                                      //而--snapshot表示的是继续训练模型, 之前暂停了模型训练,现在继续训练
  vector<string> stages = get_stages_from_flags();

  caffe::SolverParameter solver_param;  //###获取并解析用户定义的solver.prototxt
  caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param);

  solver_param.mutable_train_state()->set_level(FLAGS_level);
  for (int i = 0; i < stages.size(); i++) {
    solver_param.mutable_train_state()->add_stage(stages[i]);
  }

  // If the gpus flag is not provided, allow the mode and device to be set
  // in the solver prototxt.
  //##这一段代码对于gpu的选择很关键,我们已经了解到,可以在输入命令行的时候配置gpu信息,也可以在solver.prototxt中定义GPU信息
  //##此时先看命令行中是否设置了gpu,如果没有,再按照solver.prototxt中的描述来,
  //##如果solver.prototxt中只是选用了gpu而没有指定几号,就默认0号
  if (FLAGS_gpu.size() == 0
      && solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) {
      if (solver_param.has_device_id()) {
          FLAGS_gpu = "" +
              boost::lexical_cast<string>(solver_param.device_id());
      } else {  // Set default GPU if unspecified
          FLAGS_gpu = "" + boost::lexical_cast<string>(0);
      }
  }

// ##下面这几行在核验gpu检测结果,如果没有gpu信息,那么则使用cpu训练,否则,就开始一些GPU训练的初始化工作
  vector<int> gpus;
  get_gpus(&gpus);
  if (gpus.size() == 0) {
    LOG(INFO) << "Use CPU.";
    Caffe::set_mode(Caffe::CPU);
  } else {
    ostringstream s;
    for (int i = 0; i < gpus.size(); ++i) {
      s << (i ? ", " : "") << gpus[i];
    }
    LOG(INFO) << "Using GPUs " << s.str();
#ifndef CPU_ONLY
    cudaDeviceProp device_prop;
    for (int i = 0; i < gpus.size(); ++i) {
      cudaGetDeviceProperties(&device_prop, gpus[i]);
      LOG(INFO) << "GPU " << gpus[i] << ": " << device_prop.name;
    }
#endif
    solver_param.set_device_id(gpus[0]);
    Caffe::SetDevice(gpus[0]);
    Caffe::set_mode(Caffe::GPU);
    Caffe::set_solver_count(gpus.size());
  }

  caffe::SignalHandler signal_handler(
        GetRequestedAction(FLAGS_sigint_effect),
        GetRequestedAction(FLAGS_sighup_effect));

  shared_ptr<caffe::Solver<float> >
      solver(caffe::SolverRegistry<float>::CreateSolver(solver_param));

  solver->SetActionFunction(signal_handler.GetActionFunction());

// ##在这里查询了一下用户有没有定义snapshot参数和weights参数,因为如果定义了这两个参数,代表用户可能会希望从之前的 
     中断训练处继续训练或者借用其他模型初始化网络,caffe在对两个参数相关的内容进行处理时都要用到solver指针 
  if (FLAGS_snapshot.size()) {
    LOG(INFO) << "Resuming from " << FLAGS_snapshot;
    solver->Restore(FLAGS_snapshot.c_str());
  } else if (FLAGS_weights.size()) {
    CopyLayers(solver.get(), FLAGS_weights);
  }
// ##如果有不止一块gpu参与训练,那么将开启多gpu训练模式
  if (gpus.size() > 1) {
    caffe::P2PSync<float> sync(solver, NULL, solver->param());
    sync.Run(gpus);
  } else {
    LOG(INFO) << "Starting Optimization";
    solver->Solve();     //使用Solve()接口正式开始优化网络
  }
  LOG(INFO) << "Optimization Done.";
  return 0;
}
RegisterBrewFunction(train);

//====================================测试 模型===========================================//
// Test: score a model.
int test() { //##需要输入model
  CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score."; 
  CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score.";
  vector<string> stages = get_stages_from_flags();

  // Set device id and mode  
  // ##设置设备的id和模式,如果没有设置GPU就会默认采用CPU来test,这一点我上篇博文有提到
  vector<int> gpus;
  get_gpus(&gpus);
  if (gpus.size() != 0) {
    LOG(INFO) << "Use GPU with device ID " << gpus[0];
#ifndef CPU_ONLY
    cudaDeviceProp device_prop;
    cudaGetDeviceProperties(&device_prop, gpus[0]);
    LOG(INFO) << "GPU device name: " << device_prop.name;
#endif
    Caffe::SetDevice(gpus[0]);
    Caffe::set_mode(Caffe::GPU);
  } else {
    LOG(INFO) << "Use CPU.";
    Caffe::set_mode(Caffe::CPU);
  }
  // Instantiate the caffe net. ##实例化此caffe net
  Net<float> caffe_net(FLAGS_model, caffe::TEST, FLAGS_level, &stages);
  caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
  LOG(INFO) << "Running for " << FLAGS_iterations << " iterations.";

  vector<int> test_score_output_id;
  vector<float> test_score;
  float loss = 0;
  for (int i = 0; i < FLAGS_iterations; ++i) {
    float iter_loss;
    const vector<Blob<float>*>& result =
        caffe_net.Forward(&iter_loss);
    loss += iter_loss;
    int idx = 0;
    for (int j = 0; j < result.size(); ++j) {
      const float* result_vec = result[j]->cpu_data();
      for (int k = 0; k < result[j]->count(); ++k, ++idx) {
        const float score = result_vec[k];
        if (i == 0) {
          test_score.push_back(score);
          test_score_output_id.push_back(j);
        } else {
          test_score[idx] += score;
        }
        const std::string& output_name = caffe_net.blob_names()[
            caffe_net.output_blob_indices()[j]];
        LOG(INFO) << "Batch " << i << ", " << output_name << " = " << score;
      }
    }
  }
  loss /= FLAGS_iterations;
  LOG(INFO) << "Loss: " << loss;
  for (int i = 0; i < test_score.size(); ++i) {
    const std::string& output_name = caffe_net.blob_names()[
        caffe_net.output_blob_indices()[test_score_output_id[i]]];
    const float loss_weight = caffe_net.blob_loss_weights()[
        caffe_net.output_blob_indices()[test_score_output_id[i]]];
    std::ostringstream loss_msg_stream;
    const float mean_score = test_score[i] / FLAGS_iterations;
    if (loss_weight) {
      loss_msg_stream << " (* " << loss_weight
                      << " = " << loss_weight * mean_score << " loss)";
    }
    LOG(INFO) << output_name << " = " << mean_score << loss_msg_stream.str();
  }

  return 0;
}
RegisterBrewFunction(test);

//===================================== 计时:评测模型执行时间 =========================================//
// Time: benchmark the execution time of a model.
int time() {
  CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time.";
  caffe::Phase phase = get_phase_from_flags(caffe::TRAIN);
  vector<string> stages = get_stages_from_flags();

  // Set device id and mode  ##指定设备id和mode,如果没有设置gpu,就会默认采用cpu
  vector<int> gpus;
  get_gpus(&gpus);
  if (gpus.size() != 0) {
    LOG(INFO) << "Use GPU with device ID " << gpus[0];
    Caffe::SetDevice(gpus[0]);
    Caffe::set_mode(Caffe::GPU);
  } else {
    LOG(INFO) << "Use CPU.";
    Caffe::set_mode(Caffe::CPU);
  }
  // Instantiate the caffe net. ##实例化caffe net
  Net<float> caffe_net(FLAGS_model, phase, FLAGS_level, &stages);

  // Do a clean forward and backward pass, so that memory allocation are done
  // and future iterations will be more stable.
  // ##做一次干净的前向、反向流程,保证完成存储区分配
  LOG(INFO) << "Performing Forward";
  // Note that for the speed benchmark, we will assume that the network does
  // not take any input blobs.
  // ##速度测试,假定网络不需要任何输入Blobs
  float initial_loss;
  caffe_net.Forward(&initial_loss);
  LOG(INFO) << "Initial loss: " << initial_loss;
  LOG(INFO) << "Performing Backward";
  caffe_net.Backward();

  const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
  const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
  const vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
  const vector<vector<bool> >& bottom_need_backward =
      caffe_net.bottom_need_backward();
  LOG(INFO) << "*** Benchmark begins ***";
  LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations.";
  Timer total_timer;
  total_timer.Start();
  Timer forward_timer;
  Timer backward_timer;
  Timer timer;
  std::vector<double> forward_time_per_layer(layers.size(), 0.0);
  std::vector<double> backward_time_per_layer(layers.size(), 0.0);
  double forward_time = 0.0;
  double backward_time = 0.0;
  for (int j = 0; j < FLAGS_iterations; ++j) {
    Timer iter_timer;
    iter_timer.Start();
    forward_timer.Start();
    for (int i = 0; i < layers.size(); ++i) {
      timer.Start();
      layers[i]->Forward(bottom_vecs[i], top_vecs[i]);
      forward_time_per_layer[i] += timer.MicroSeconds();
    }
    forward_time += forward_timer.MicroSeconds();
    backward_timer.Start();
    for (int i = layers.size() - 1; i >= 0; --i) {
      timer.Start();
      layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
                          bottom_vecs[i]);
      backward_time_per_layer[i] += timer.MicroSeconds();
    }
    backward_time += backward_timer.MicroSeconds();
    LOG(INFO) << "Iteration: " << j + 1 << " forward-backward time: "
      << iter_timer.MilliSeconds() << " ms.";
  }
  LOG(INFO) << "Average time per layer: ";
  for (int i = 0; i < layers.size(); ++i) {
    const caffe::string& layername = layers[i]->layer_param().name();
    LOG(INFO) << std::setfill(' ') << std::setw(10) << layername <<
      "\tforward: " << forward_time_per_layer[i] / 1000 /
      FLAGS_iterations << " ms.";
    LOG(INFO) << std::setfill(' ') << std::setw(10) << layername  <<
      "\tbackward: " << backward_time_per_layer[i] / 1000 /
      FLAGS_iterations << " ms.";
  }
  total_timer.Stop();
  LOG(INFO) << "Average Forward pass: " << forward_time / 1000 /
    FLAGS_iterations << " ms.";
  LOG(INFO) << "Average Backward pass: " << backward_time / 1000 /
    FLAGS_iterations << " ms.";
  LOG(INFO) << "Average Forward-Backward: " << total_timer.MilliSeconds() /
    FLAGS_iterations << " ms.";
  LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() << " ms.";
  LOG(INFO) << "*** Benchmark ends ***";
  return 0;
}
RegisterBrewFunction(time);

//================================================ main函数 ======================================================//
int main(int argc, char** argv) {
  // Print output to stderr (while still logging).
  FLAGS_alsologtostderr = 1;
  // Set version
  gflags::SetVersionString(AS_STRING(CAFFE_VERSION));
  // Usage message.
  gflags::SetUsageMessage("command line brew\n"
      "usage: caffe <command> <args>\n\n"
      "commands:\n"
      "  train           train or finetune a model\n"
      "  test            score a model\n"
      "  device_query    show GPU diagnostic information\n"
      "  time            benchmark model execution time");
  // Run tool or show usage.
  caffe::GlobalInit(&argc, &argv);
  if (argc == 2) {
#ifdef WITH_PYTHON_LAYER
    try {
#endif
      return GetBrewFunction(caffe::string(argv[1]))();
#ifdef WITH_PYTHON_LAYER
    } catch (bp::error_already_set) {
      PyErr_Print();
      return 1;
    }
#endif
  } else {
    gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/caffe");
  }
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-08-06 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、怎么用这个命令
  • 2、caffe.cpp源文件
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档