台湾大学林轩田机器学习技法课程学习笔记3 -- Kernel Support Vector Machine

上节课我们主要介绍了SVM的对偶形式,即dual SVM。Dual SVM也是一个二次规划问题,可以用QP来进行求解。之所以要推导SVM的对偶形式是因为:首先,它展示了SVM的几何意义;然后,从计算上,求解过程“好像”与所在维度\hat d无关,规避了\hat d很大时难以求解的情况。但是,上节课的最后,我们也提到dual SVM的计算过程其实跟\hat d还是有关系的。那么,能不能完全摆脱对\hat d的依赖,从而减少SVM计算量呢?这就是我们本节课所要讲的主要内容。

Kernel Trick

我们上节课推导的dual SVM是如下形式:

其中α是拉格朗日因子,共N个,这是我们要求解的,而条件共有N+1个。我们来看向量Q_D中的q_{n,m}=y_ny_mz_n^Tz_m,看似这个计算与\hat d无关,但是z_n^Tz_m的内积中不得不引入\hat d。也就是说,如果\hat d很大,计算z_n^Tz_m的复杂度也会很高,同样会影响QP问题的计算效率。可以说,q_{n,m}=y_ny_mz_n^Tz_m这一步是计算的瓶颈所在。

其实问题的关键在于z_n^Tz_m内积求解上。我们知道,z是由x经过特征转换而来:

z_n^Tz_m=\Phi(x_n)\Phi(x_m)

如果从x空间来看的话,z_n^Tz_m分为两个步骤:1. 进行特征转换\Phi(x_n)\Phi(x_m);2. 计算\Phi(x_n)\Phi(x_m)的内积。这种先转换再计算内积的方式,必然会引入\hat d参数,从而在\hat d很大的时候影响计算速度。那么,若把这两个步骤联合起来,是否可以有效地减小计算量,提高计算速度呢?

我们先来看一个简单的例子,对于二阶多项式转换,各种排列组合为:

这里提一下,为了简单起见,我们把x_0=1包含进来,同时将二次项x_1x_2x_2x_1也包含进来。转换之后再做内积并进行推导,得到:

其中x^Tx'是x空间中特征向量的内积。所以,\Phi_2(x)与\Phi_2(x')的内积的复杂度由原来的O(d^2)变成O(d),只与x空间的维度d有关,而与z空间的维度\hat d无关,这正是我们想要的!

至此,我们发现如果把特征转换和z空间计算内积这两个步骤合并起来,有可能会简化计算。因为我们只是推导了二阶多项式会提高运算速度,这个特例并不具有一般推论性。但是,我们还是看到了希望。

我们把合并特征转换和计算内积这两个步骤的操作叫做Kernel Function,用大写字母K表示。例如刚刚讲的二阶多项式例子,它的kernel function为: K_{\Phi}(x,x')=\Phi(x)^T\Phi(x') K_{\Phi_2}(x,x')=1+(x^Tx')+(x^Tx')^2

有了kernel function之后,我们来看看它在SVM里面如何使用。在dual SVM中,二次项系数q_{n,m}中有z的内积计算,就可以用kernel function替换: q_{n,m}=y_ny_mz_n^Tz_m=y_ny_mK(x_n,x_m)

所以,直接计算出K(x_n,x_m),再代入上式,就能得到q_{n,m}的值。

q_{n,m}值计算之后,就能通过QP得到拉格朗日因子\alpha_n。然后,下一步就是计算b(取\alpha_n>0的点,即SV),b的表达式中包含z,可以作如下推导: b=y_s-w^Tz_s=y_s-(\sum_{n=1}^N\alpha_ny_nz_n)^Tz_s=y_s-\sum_{n=1}^N\alpha_ny_n(K(x_n,x_s))

这样得到的b就可以用kernel function表示,而与z空间无关。

最终我们要求的矩g_{SVM}可以作如下推导: g_{SVM}(x)=sign(w^T\Phi(x)+b)=sign((\sum_{n=1}^N\alpha_ny_nz_n)^Tz+b)=sign(\sum_{n=1}^N\alpha_ny_n(K(x_n,x))+b)

至此,dual SVM中我们所有需要求解的参数都已经得到了,而且整个计算过程中都没有在z空间作内积,即与z无关。我们把这个过程称为kernel trick,也就是把特征转换和计算内积两个步骤结合起来,用kernel function来避免计算过程中受\hat d的影响,从而提高运算速度。

那么总结一下,引入kernel funtion后,SVM算法变成:

分析每个步骤的时间复杂度为:

我们把这种引入kernel function的SVM称为kernel SVM,它是基于dual SVM推导而来的。kernel SVM同样只用SV(\alpha_n>0)就能得到最佳分类面,而且整个计算过程中摆脱了\hat d的影响,大大提高了计算速度。

Polynomial Kernel

我们刚刚通过一个特殊的二次多项式导出了相对应的kernel,其实二次多项式的kernel形式是多种的。例如,相应系数的放缩构成完全平方公式等。下面列举了几种常用的二次多项式kernel形式:

比较一下,第一种\Phi_2(x)(蓝色标记)和第三种\Phi_2(x)(绿色标记)从某种角度来说是一样的,因为都是二次转换,对应到同一个z空间。但是,它们系数不同,内积就会有差异,那么就代表有不同的距离,最终可能会得到不同的SVM margin。所以,系数不同,可能会得到不同的SVM分界线。通常情况下,第三种\Phi_2(x)(绿色标记)简单一些,更加常用。

不同的转换,对应到不同的几何距离,得到不同的距离,这是什么意思呢?举个例子,对于我们之前介绍的一般的二次多项式kernel,它的SVM margin和对应的SV如下图(中)所示。对于上面介绍的完全平方公式形式,自由度γ=0.001,它的SVM margin和对应的SV如下图(左)所示。比较发现,这种SVM margin比较简单一些。对于自由度\gamma=1000,它的SVM margin和对应的SV如下图(右)所示。与前两种比较,margin和SV都有所不同。

通过改变不同的系数,得到不同的SVM margin和SV,如何选择正确的kernel,非常重要。

归纳一下,引入ζ≥0和γ>0,对于Q次多项式一般的kernel形式可表示为:

所以,使用高阶的多项式kernel有两个优点:

  • 得到最大SVM margin,SV数量不会太多,分类面不会太复杂,防止过拟合,减少复杂度
  • 计算过程避免了对\hat d的依赖,大大简化了计算量。

顺便提一下,当多项式阶数Q=1时,那么对应的kernel就是线性的,即本系列课程第一节课所介绍的内容。对于linear kernel,计算方法是简单的,而且也是我们解决SVM问题的首选。还记得机器学习基石课程中介绍的奥卡姆剃刀定律(Occam’s Razor)吗?

Gaussian Kernel

刚刚我们介绍的Q阶多项式kernel的阶数是有限的,即特征转换的\hat d是有限的。但是,如果是无限多维的转换Φ(x),是否还能通过kernel的思想,来简化SVM的计算呢?答案是肯定的。

先举个例子,简单起见,假设原空间是一维的,只有一个特征x,我们构造一个kernel function为高斯函数: K(x,x')=e^{-(x-x')^2}

构造的过程正好与二次多项式kernel的相反,利用反推法,先将上式分解并做泰勒展开:

将构造的K(x,x’)推导展开为两个Φ(x)和\Phi(x')的乘积,其中: \Phi(x)=e^{-x^2}\cdot (1,\sqrt \frac{2}{1!}x,\sqrt \frac{2^2}{2!}x^2,\cdots)

通过反推,我们得到了Φ(x),Φ(x)是无限多维的,它就可以当成特征转换的函数,且\hat d是无限的。这种Φ(x)得到的核函数即为Gaussian kernel。

更一般地,对于原空间不止一维的情况(d>1),引入缩放因子γ>0,它对应的Gaussian kernel表达式为:

K(x,x')=e^{-\gamma||x-x'||^2}

那么引入了高斯核函数,将有限维度的特征转换拓展到无限的特征转换中。根据本节课上一小节的内容,由K,计算得到\alpha_n和b,进而得到矩g_{SVM}。将其中的核函数K用高斯核函数代替,得到: g_{SVM}(x)=sign(\sum_{SV}\alpha_ny_nK(x_n,x)+b)=sign(\sum_{SV}\alpha_ny_ne^{(-\gamma||x-x_n||^2)}+b)

通过上式可以看出,g_{SVM}有n个高斯函数线性组合而成,其中n是SV的个数。而且,每个高斯函数的中心都是对应的SV。通常我们也把高斯核函数称为径向基函数(Radial Basis Function, RBF)。

总结一下,kernel SVM可以获得large-margin的hyperplanes,并且可以通过高阶的特征转换使E_{in}尽可能地小。kernel的引入大大简化了dual SVM的计算量。而且,Gaussian kernel能将特征转换扩展到无限维,并使用有限个SV数量的高斯函数构造出矩g_{SVM}

值得注意的是,缩放因子γ取值不同,会得到不同的高斯核函数,hyperplanes不同,分类效果也有很大的差异。举个例子,γ分别取1, 10, 100时对应的分类效果如下:

从图中可以看出,当γ比较小的时候,分类线比较光滑,当γ越来越大的时候,分类线变得越来越复杂和扭曲,直到最后,分类线变成一个个独立的小区域,像小岛一样将每个样本单独包起来了。为什么会出现这种区别呢?这是因为γ越大,其对应的高斯核函数越尖瘦,那么有限个高斯核函数的线性组合就比较离散,分类效果并不好。所以,SVM也会出现过拟合现象,γ的正确选择尤为重要,不能太大。

Comparison of Kernels

目前为止,我们已经介绍了几种kernel,下面来对几种kernel进行比较。

首先,Linear Kernel是最简单最基本的核,平面上对应一条直线,三维空间里对应一个平面。Linear Kernel可以使用上一节课介绍的Dual SVM中的QP直接计算得到。

Linear Kernel的优点是计算简单、快速,可以直接使用QP快速得到参数值,而且从视觉上分类效果非常直观,便于理解;缺点是如果数据不是线性可分的情况,Linear Kernel就不能使用了。

然后,Polynomial Kernel的hyperplanes是由多项式曲线构成。

Polynomial Kernel的优点是阶数Q可以灵活设置,相比linear kernel限制更少,更贴近实际样本分布;缺点是当Q很大时,K的数值范围波动很大,而且参数个数较多,难以选择合适的值。

对于Gaussian Kernel,表示为高斯函数形式。

Gaussian Kernel的优点是边界更加复杂多样,能最准确地区分数据样本,数值计算K值波动较小,而且只有一个参数,容易选择;缺点是由于特征转换到无限维度中,w没有求解出来,计算速度要低于linear kernel,而且可能会发生过拟合。

除了这三种kernel之外,我们还可以使用其它形式的kernel。首先,我们考虑kernel是什么?实际上kernel代表的是两笔资料x和x’,特征变换后的相似性即内积。但是不能说任何计算相似性的函数都可以是kernel。有效的kernel还需满足几个条件:

  • K是对称的
  • K是半正定的

这两个条件不仅是必要条件,同时也是充分条件。所以,只要我们构造的K同时满足这两个条件,那它就是一个有效的kernel。这被称为Mercer 定理。事实上,构造一个有效的kernel是比较困难的。

总结

本节课主要介绍了Kernel Support Vector Machine。首先,我们将特征转换和计算内积的操作合并到一起,消除了\hat d的影响,提高了计算速度。然后,分别推导了Polynomial Kernel和Gaussian Kernel,并列举了各自的优缺点并做了比较。对于不同的问题,应该选择合适的核函数进行求解,以达到最佳的分类效果。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习技法》课程

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

CNN入门再介绍

导语:学习深度神经网络方面的算法已经有一段时间了,对目前比较经典的模型也有了一些了解。这种曾经一度低迷的方法现在已经吸引了很多领域的目光,在几年前仅仅存在于研究...

39040
来自专栏机器学习算法与Python学习

入门 | 什么是自注意力机制?

目前有许多句子表征的方法。本文作者之前的博文中已经讨论了 5 中不同的基于单词表征的句子表征方法。想要了解更多这方面的内容,你可以访问以下链接:https://...

41820
来自专栏新智元

【AAAI 2018】中大商汤等提出深度网络加速新方法,具有强大兼容能力

作者:陈添水 【新智元导读】中山大学、香港理工大学、商汤等机构的联合研究团队提出基于类小波自编码机的深度网络加速法,不需要改动原来网络的结构,故可以兼容现有的深...

38740
来自专栏大数据挖掘DT机器学习

深度学习大神都推荐入门必须读完这9篇论文

Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力...

55450
来自专栏MyBlog

Energy-efficient Amortized Inference with Cascaded Deep Classifiers论文笔记

深度神经网络在许多AI任务中取得了卓越的成功, 但是通常会造成高的计算量和能量耗费, 对于某些能量有约束的应用, 例如移动传感器等.

8330
来自专栏大数据文摘

斯坦福深度学习课程第三弹:神经网络与反向传播

327140
来自专栏PPV课数据科学社区

Come On!决策树算法!

机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类...

40050
来自专栏人工智能LeadAI

BAT机器学习面试1000题系列(第76~149题)

76、看你是搞视觉的,熟悉哪些CV框架,顺带聊聊CV最近五年的发展史如何?深度学习 DL应用 难 原英文:adeshpande3.github.io 作者:Ad...

783100
来自专栏机器人网

深度学习架构谱系(完整图)

金成勳在 GitHub 上梳理出的谱系图如下(可点击图片放大查看),最后的蓝色字体部分是各分支内的杰出研究成果(附所有论文链接)。机器之心在此基础上对各个分支网...

10210
来自专栏SnailTyan

Inception-V3论文翻译——中文版

Rethinking the Inception Architecture for Computer Vision 摘要 对许多任务而言,卷积网络是目前最新的计...

46410

扫码关注云+社区

领取腾讯云代金券