首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >面向对象编程风格 VS 基于对象编程风格(boost::bind/function)

面向对象编程风格 VS 基于对象编程风格(boost::bind/function)

作者头像
s1mba
发布2017-12-28 15:37:00
1.3K0
发布2017-12-28 15:37:00
举报
文章被收录于专栏:开发与安全开发与安全

本文主要通过实现Thread 类来展现两种编程风格的不同点。

很多人没有区分“面向对象”和“基于对象”两个不同的概念。面向对象的三大特点(封装,继承,多态)缺一不可。通常“基于对象”是使用对象,但是无法利用现有的对象模板产生新的对象类型,继而产生新的对象,也就是说“基于对象”没有继承的特点。而“多态”表示为父类类型的子类对象实例,没有了继承的概念也就无从谈论“多态”。现在的很多流行技术都是基于对象的,它们使用一些封装好的对象,调用对象的方法,设置对象的属性。但是它们无法让程序员派生新对象类型。他们只能使用现有对象的方法和属性。所以当你判断一个新的技术是否是面向对象的时候,通常可以使用后两个特性来加以判断。“面向对象”和“基于对象”都实现了“封装”的概念,但是面向对象实现了“继承和多态”,而“基于对象”没有实现这些。----摘自网络

一、面向对象编程风格

Thread 类图:

注:下划线表示静态成员

Thread.h:

#ifndef _THREAD_H_
#define _THREAD_H_

#include <pthread.h>

class Thread
{
public:
    Thread();
    virtual ~Thread();

    void Start();
    void Join();

    void SetAutoDelete(bool autoDelete);

private:
    static void *ThreadRoutine(void *arg); //没有隐含的this 指针
    virtual void Run() = 0;
    pthread_t threadId_;
    bool autoDelete_;
};

#endif // _THREAD_H_

Thread.cpp:

#include "Thread.h"
#include <iostream>
using namespace std;


Thread::Thread() : autoDelete_(false)
{
    cout << "Thread ..." << endl;
}

Thread::~Thread()
{
    cout << "~Thread ..." << endl;
}

void Thread::Start()
{
    pthread_create(&threadId_, NULL, ThreadRoutine, this);
}

void Thread::Join()
{
    pthread_join(threadId_, NULL);
}

void *Thread::ThreadRoutine(void *arg)
{
    Thread *thread = static_cast<Thread *>(arg);
    thread->Run(); //线程结束,线程对象也得析构
    if (thread->autoDelete_)
        delete thread;
    return NULL;
}

void Thread::SetAutoDelete(bool autoDelete)
{
    autoDelete_ = autoDelete;
}

Thread_test.cpp:

#include "Thread.h"
#include <unistd.h>
#include <iostream>
using namespace std;

class TestThread : public Thread
{
public:
    TestThread(int count) : count_(count)
    {
        cout << "TestThread ..." << endl;
    }

    ~TestThread()
    {
        cout << "~TestThread ..." << endl;
    }

private:
    void Run()
    {
        while (count_--)
        {
            cout << "this is a test ..." << endl;
            sleep(1);
        }
    }

    int count_;
};

int main(void)
{
    TestThread *t2 = new TestThread(5);
    t2->SetAutoDelete(true);
    t2->Start();
    t2->Join();

    for (; ; )
        pause();

    return 0;
}

有几个点需要注意:

1、Thread类是虚基类,TestThread类继承来实现虚函数run()。

2、根据 pthread_create 的原型

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start_routine) (void *), void *arg);

start_routine 参数是一般的函数指针,故不能直接将run() 作为此参数,因为run()是成员函数,隐含this指针,故实现一个静态成员函数ThreadRoutine(), 在里面调用run(),此外参数arg 我们传递this指针,在ThreadRoutine()内将派生类指针转换为基类指针来调用run()。

3、把run()实现为private是为了不让用户直接调用,因为这样根本就没有产生线程调度。

4、注意区分线程与线程对象,设置autoDetele_ 成员也是为了当线程结束时能够立刻销毁线程对象。在main函数内,主线程pthread_join()等待线程结束;run()结束后会delete 掉线程对象,否则要一直等到main函数结束才会被自动销毁。

二、基于对象编程风格

boost bind/function库的出现,替代了stl中的mem_fun,ptr_fun  ,bind1st,bin2nd等函数,这些函数参考这里

下面举例boost bind/function 的使用。

#include <iostream>
#include <boost/function.hpp>
#include <boost/bind.hpp>
using namespace std;
class Foo
{
public:
    void memberFunc(double d, int i, int j)
    {
        cout << d << endl;//打印0.5
        cout << i << endl;//打印100
        cout << j << endl;//打印10
    }
};
int main()
{
    Foo foo;
    boost::function<void (int)> fp = boost::bind(&Foo::memberFunc, &foo, 0.5, _1, 10);
    fp(100);
    boost::function<void (int, int)> fp2 = boost::bind(&Foo::memberFunc, &foo, 0.5, _1, _2);
    fp2(100, 200);
    boost::function<void (int, int)> fp3 = boost::bind(&Foo::memberFunc, boost::ref(foo), 0.5, _1, _2);
    fp3(55, 66);
    return 0;
}

boost bind/function 实现转换函数接口。

fp(100); 等价于 (&foo)->memberFunc(0.5, 100, 10); 即_1 是占位符,如果绑定的是一般的函数,则bind 中的参数中不再需要this指针,当然一般函数也没有类名前缀。

boost::ref() 表示引用,fp3(55, 66); 相当于foo.memberFunc(0.5, 55, 66);

Thread 类图:

typedef boost::function<void ()> ThreadFunc;

Thread.h:

#ifndef _THREAD_H_
#define _THREAD_H_

#include <pthread.h>
#include <boost/function.hpp>

class Thread
{
public:
    typedef boost::function<void ()> ThreadFunc;
    explicit Thread(const ThreadFunc &func);

    void Start();
    void Join();

    void SetAutoDelete(bool autoDelete);

private:
    static void *ThreadRoutine(void *arg);
    void Run();
    ThreadFunc func_;
    pthread_t threadId_;
    bool autoDelete_;
};

#endif // _THREAD_H_

Thread.cpp:

#include "Thread.h"
#include <iostream>
using namespace std;


Thread::Thread(const ThreadFunc &func) : func_(func), autoDelete_(false)
{
}

void Thread::Start()
{
    pthread_create(&threadId_, NULL, ThreadRoutine, this);
}

void Thread::Join()
{
    pthread_join(threadId_, NULL);
}

void *Thread::ThreadRoutine(void *arg)
{
    Thread *thread = static_cast<Thread *>(arg);
    thread->Run();
    if (thread->autoDelete_)
        delete thread;
    return NULL;
}

void Thread::SetAutoDelete(bool autoDelete)
{
    autoDelete_ = autoDelete;
}

void Thread::Run()
{
    func_();
}

Thread_test.cpp:

#include "Thread.h"
#include <boost/bind.hpp>
#include <unistd.h>
#include <iostream>
using namespace std;

class Foo
{
public:
    Foo(int count) : count_(count)
    {
    }

    void MemberFun()
    {
        while (count_--)
        {
            cout << "this is a test ..." << endl;
            sleep(1);
        }
    }

    void MemberFun2(int x)
    {
        while (count_--)
        {
            cout << "x=" << x << " this is a test2 ..." << endl;
            sleep(1);
        }
    }

    int count_;
};

void ThreadFunc()
{
    cout << "ThreadFunc ..." << endl;
}

void ThreadFunc2(int count)
{
    while (count--)
    {
        cout << "ThreadFunc2 ..." << endl;
        sleep(1);
    }
}


int main(void)
{
    Thread t1(ThreadFunc);
    Thread t2(boost::bind(ThreadFunc2, 3));
    Foo foo(3);
    Thread t3(boost::bind(&Foo::MemberFun, &foo));
    Foo foo2(3);
    Thread t4(boost::bind(&Foo::MemberFun2, &foo2, 1000));

    t1.Start();
    t2.Start();
    t3.Start();
    t4.Start();

    t1.Join();
    t2.Join();
    t3.Join();
    t4.Join();


    return 0;
}

注意:Thread类不再是虚基类,run() 也不是虚函数,Thread 有个成员ThreadFunc func_,此时不再是通过继承基类来重新实现run(),进而实现多态;而是通过绑定不同的函数指针到func_ 上来实现不同的行为。我们既可以绑定一般的全局函数,也可以绑定其他类里面的成员函数,操作很方便。此外,Thread t3, t4 不能绑定到同一个类对象foo 上,因为此时MemFun() 和MemFun2() 都会去访问同一个对象foo的count_ ,就会出现问题了。

假设TcpServer是一个网络库,如何使用它呢?那要看它是如何实现的:

C编程风格:注册三个全局函数到网络库,网络库函数的参数有函数指针类型,里面通过函数指针来回调。

面向对象风格:用一个EchoServer继承自TcpServer(抽象类),实现三个纯虚函数接口OnConnection, OnMessage, OnClose。通过基类指针调用虚函数实现多态。

基于对象风格:用一个EchoServer包含一个TcpServer(具体类)对象成员server,在构造函数中用boost::bind 来注册三个成员函数,如server.SetConnectionCallback(boost::bind(&EchoServer::OnConnection, ...)); 也就是设置了server.ConnectionCallback_ 成员,通过绑定不同的函数指针,调用server.ConnectionCallback_() 时就实现了行为的不同。如下所示。

class EchoServer
{
public:
    EchoServer()
    {
        server_.SetConnectionCallback(boost::bind(&EchoServer::OnConnection, ...));
                                      ...
    }
    void OnConnection()
    {
        ..
    }

    TcpServer server_;
};

参考:

muduo manual.pdf

《linux 多线程服务器编程:使用muduo c++网络库》

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2013-10-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档