从零开始学C++之虚继承和虚函数对C++对象内存模型造成的影响(类/对象的大小)

首先重新回顾一下关于类/对象大小的计算原则:

类大小计算遵循结构体对齐原则

第一个数据成员放在offset为0的位置

其它成员对齐至min(sizeof(member),#pragma pack(n)所指定的值)的整数倍。

整个结构体也要对齐,结构体总大小对齐至各个min中最大值的整数倍。

win32 可选的有1, 2, 4, 8, 16

linux 32 可选的有1, 2, 4

类的大小与数据成员有关与成员函数无关 类的大小与静态数据成员无关 虚继承对类的大小的影响 虚函数对类的大小的影响

下面通过实例来展示虚继承和虚函数对类大小造成的影响。

测试环境为:Win32 + Vs2008

一、只出现虚继承的情况

#include <iostream>
using namespace std;

class BB
{
public :
      int bb_ ;
};

class B1 : virtual public BB
{
public :
      int b1_ ;
};

class B2 : virtual public BB
{
public :
      int b2_ ;
};

class DD : public B1, public B2
{
public :
      int dd_ ;
};

int main (void)
{
      cout<<sizeof (BB)<< endl;
      cout<<sizeof (B1)<< endl;
      cout<<sizeof (DD)<< endl;

      B1 b1 ;
      int** p ;

      cout<<&b1 <<endl;
      cout<<&b1 .bb_<< endl;
      cout<<&b1 .b1_<< endl;

      p = (int **)&b1;
      cout<<p [0][0]<<endl;
      cout<<p [0][1]<<endl;

      DD dd ;
      cout<<&dd <<endl;
      cout<<&dd .bb_<< endl;
      cout<<&dd .b1_<< endl;
      cout<<&dd .b2_<< endl;
      cout<<&dd .dd_<< endl;
      p = (int **)&dd;
      cout<<p [0][0]<<endl;
      cout<<p [0][1]<<endl;
      cout<<endl ;
      cout<<p [2][0]<<endl;
      cout<<p [2][1]<<endl;

      BB* pp ;

      pp = &dd ;
      dd.bb_ = 10; //对象的内存模型在编译时就已经确定了,否则无法定义类的对象,因为要开辟内存
      int base = pp-> bb_;     // 通过间接访问 (其实pp 已经偏移了20 ),这需要运行时的支持
      cout<<"dd.bb_=" <<base<< endl;

      return 0;
}

从输出的地址和虚基类表成员数据可以画出对象内存模型图:

virtual base table 

本类地址与虚基类表指针地址的差 虚基类地址与虚基类表指针地址的差

virtual base table pointer(vbptr)

从程序可以看出pp是BB* 指针,通过打印pp 的值与&dd 比较可知,

cout<<(void*)&dd<<endl; cout<<(void*)pp<<endl;

pp实际上已经偏移了20个字节,如何实现的呢?先找到首个vbptr,找到虚基类BB地址与虚基类表指针地址的差,也即是20,接着pp偏移20个字节指向了dd对象中的BB部分,然后就访问到了bb_,这是在运行时才做的转换。记住:C++标准规定对对象取地址将始终为对应类型的首地址。

二、只出现虚函数的情况

(一):一般继承

#include <iostream>
using namespace std;

class Base
{
public :
    virtual void Fun1()
    {
        cout << "Base::Fun1 ..." << endl;
    }

    virtual void Fun2()
    {
        cout << "Base::Fun2 ..." << endl;
    }
    int data1_ ;
};

class Derived : public Base
{
public :
    void Fun2 ()
    {
        cout << "Derived::Fun2 ..." << endl;
    }
    virtual void Fun3()
    {
        cout << "Derived::Fun3 ..." << endl;
    }
    int data2_ ;
};

typedef void (* FUNC)(void );

int main (void)
{
    cout << sizeof (Base) << endl;
    cout << sizeof (Derived) << endl;
    Base b ;
    int **p = (int **)& b;
    FUNC fun = (FUNC) p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    cout << endl ;

    Derived d ;
    p = (int **)&d;
    fun = (FUNC )p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    fun = (FUNC )p[0][2];
    fun();

    return 0;
}

从输出的函数体可以画出对象内存模型图:

vtbl:虚函数表(存放虚函数的函数指针)

vptr:虚函数表指针

从输出可以看出,Derived类继承了Base::Fun1,而覆盖了Fun2,此外还有自己的Fun3。注意,因为Fun3是虚函数,才会出现在虚函数表,如果是一般函数是不会的,因为不用通过vptr间接访问。

(二)、钻石继承

#include <iostream>
using namespace std;

class BB
{
public:
    virtual void vpbb()
    {
        cout << "BB:vpbb().." << endl;
    }
    int bb_;
};
class B1 : public BB
{
public:
    virtual void vpb1()
    {
        cout << "B1:vpb1().." << endl;
    }
    int b1_;
};
class B2 : public BB
{
public:
    virtual void vpb2()
    {
        cout << "B2:vpb2().." << endl;
    }
    int b2_;
};
class DD : public B1, public B2
{
public:
    virtual void vpdd()
    {
        cout << "DD:vpdd().." << endl;
    }
    int dd_;
};

typedef void (* FUNC)(void );

int main()
{
    cout << sizeof(BB) << endl;
    cout << sizeof(B1) << endl;
    cout << sizeof(DD) << endl;
    cout << endl;

    DD dd ;
    cout << &dd << endl;
    cout << &dd.B1::bb_ << endl;
    cout << &dd.B2::bb_ << endl;
    cout << &dd .b1_ << endl;
    cout << &dd .b2_ << endl;
    cout << &dd .dd_ << endl;
    cout << endl;

    B1 b ;
    int **p = (int **)& b;
    FUNC fun = (FUNC) p[0][0];
    fun();
    fun = (FUNC )p[0][1];
    fun();
    cout << endl ;

    p = (int **)&dd
    fun = (FUNC)p[0][0];
    fun();
    fun = (FUNC)p[0][1];
    fun();
    fun = (FUNC)p[0][2];
    fun();

    fun = (FUNC)p[3][0];
    fun();
    fun = (FUNC)p[3][1];
    fun();

    cout << endl;

    return 0;
}

从成员输出的地址和通过虚函数表指针访问到的函数可以画出模型:

DD::vfdd 的位置跟继承的顺序有关,如果DD先继承的是B2, 那么它将跟在B2::vfb2 的下面。

如果派生类是从多个基类继承或者有多个继承分支(从所有根类开始算起),而其中若干个继承分支上出现了多态类,则派生类将从这些分支中的每个分支上继承一个vptr,编译器也将为它生成多个vtable,有几个vptr就生成几个vtable(每个vptr分别指向其中一个),分别与它的多态基类对应。

三、虚继承与虚函数同时出现的情况:

#include <iostream>
using namespace std;

class BB
{
public :
      virtual void vfbb()
     {
           cout<<"BB::vfbb" <<endl;
     }
      virtual void vfbb2()
     {
           cout<<"BB::vfbb2" <<endl;
     }
      int bb_ ;
};

class B1 : virtual public BB
{
public :
      virtual void vfb1()
     {
           cout<<"B1::vfb1" <<endl;
     }
      int b1_ ;
};

class B2 : virtual public BB
{
public :
      virtual void vfb2()
     {
           cout<<"B2::vfb2" <<endl;
     }
      int b2_ ;
};

class DD : public B1, public B2
{
public :
      virtual void vfdd()
     {
           cout<<"DD::vfdd" <<endl;
     }
      int dd_ ;
};

typedef void (* FUNC)(void);

int main (void)
{
      cout<<sizeof (BB)<< endl;
      cout<<sizeof (B1)<< endl;
      cout<<sizeof (DD)<< endl;

      BB bb ;
      int** p ;
      p = (int **)&bb;
      FUNC fun ;
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[0][1];
      fun();
      cout<<endl ;


      B1 b1 ;
     
      p = (int **)&b1;
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[3][0];
      fun();
      fun = (FUNC )p[3][1];
      fun();

      cout<<p [1][0]<<endl;
      cout<<p [1][1]<<endl;
      cout<<endl ;



      DD dd ;
      p = (int **)&dd;
      fun = (FUNC )p[0][0];
      fun();
      fun = (FUNC )p[0][1]; // DD::vfdd 挂在 B1::vfb1的下面
      fun();
      fun = (FUNC )p[3][0];
      fun();
      fun = (FUNC )p[7][0];
      fun();
      fun = (FUNC )p[7][1];
      fun();
     
      cout<<p [1][0]<<endl;
      cout<<p [1][1]<<endl;
      cout<<p [4][0]<<endl;
      cout<<p [4][1]<<endl;


      return 0;
}

从输出的虚基类表成员数据和虚函数体可以画出对象内存模型图:

上图中vfdd 出现的位置跟继承的顺序有关,如果DD先继承的是B2,那么它将跟在vfb2 的下面。

注意:如果没有虚继承,则虚函数表会合并,一个类只会存在一个虚函数表和一个虚函数表指针(同个类的对象共享),当然也不会有虚基类表和虚基类表指针的存在。

但如果是钻石继承,那么是会存在两份虚函数表和两份虚函数表指针的。

参考:

《深入探索C++对象模型》

C++ primer 第四版 Effective C++ 3rd C++编程规范

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏申龙斌的程序人生

Eclipse油藏模型解析程序

2010年的时候,三维可视化项目中要读取eclipse建模软件产生的三维模型网格数据,经过连续多天的奋战,终于搞明白eclipse数模软件输出的egrid、in...

2897
来自专栏运维小白

linux基础(day28)

9.6 awk(上) awk工具 head -n2 test.txt|awk -F ':' '{print $1}' head -n2 test.txt|awk...

2026
来自专栏夏时

PHP 常用函数大全

2372
来自专栏闻道于事

Java异常处理中的恢复模型

2524
来自专栏debugeeker的专栏

《coredump问题原理探究》Linux x86版5.7节C风格数据结构内存布局之结构体数组

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuzhina/article/detai...

561
来自专栏灯塔大数据

每周学点大数据 | No.23 外排序(二)

No.23期 外排序(二) Mr. 王:接下来我们用一个例子对磁盘归并排序进行说明。先来约定讨论的参数:N=24,M=8,B=2。 小可:嗯,一共有2...

3316
来自专栏mathor

LeetCode329. 矩阵中的最长递增路径

 dfs,主函数中枚举起点,然后dfs函数中枚举四个方向进行移动,但是光dfs还不够,因为我们发现存在很多冗余,所以这是一道dfs+dp的问题,resul...

701
来自专栏老秦求学

算法二之子集和数问题

什么是子集和数问题? 问题分析,简单的说就是有n 个数在这N个数中选取若干个数使得这几个数的和为M。 解决问题的途径;使用回溯法。 最后形成二叉树 ? 左边是有...

63114
来自专栏犀利豆的技术空间

Redis 的基础数据结构(二) 整数集合、跳跃表、压缩列表

上篇文章写了 Redis 基础数据结构的可变字符串、链表、字典。大家可以点击链接查看。今天我们继续研究 Redis 的基础数据结构。

793
来自专栏大闲人柴毛毛

Redis源码分析(三)——Redis数据结构-字典

1. 数据结构 ? 1.1 哈希表 typedef struct dictht{ dictEntry **table; unsigned long s...

2875

扫码关注云+社区