# 非极大值抑制(Non-Maximum Suppression)

## 3. 如何使用非极大值抑制

• 根据置信度得分进行排序
• 选择置信度最高的比边界框添加到最终输出列表中，将其从边界框列表中删除
• 计算所有边界框的面积
• 计算置信度最高的边界框与其它候选框的IoU。
• 删除IoU大于阈值的边界框
• 重复上述过程，直至边界框列表为空。

Python代码如下：

```#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import cv2
import numpy as np

"""
Non-max Suppression Algorithm

@param list  Object candidate bounding boxes
@param list  Confidence score of bounding boxes
@param float IoU threshold

@return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):
# If no bounding boxes, return empty list
if len(bounding_boxes) == 0:
return [], []

# Bounding boxes
boxes = np.array(bounding_boxes)

# coordinates of bounding boxes
start_x = boxes[:, 0]
start_y = boxes[:, 1]
end_x = boxes[:, 2]
end_y = boxes[:, 3]

# Confidence scores of bounding boxes
score = np.array(confidence_score)

# Picked bounding boxes
picked_boxes = []
picked_score = []

# Compute areas of bounding boxes
areas = (end_x - start_x + 1) * (end_y - start_y + 1)

# Sort by confidence score of bounding boxes
order = np.argsort(score)

# Iterate bounding boxes
while order.size > 0:
# The index of largest confidence score
index = order[-1]

# Pick the bounding box with largest confidence score
picked_boxes.append(bounding_boxes[index])
picked_score.append(confidence_score[index])

# Compute ordinates of intersection-over-union(IOU)
x1 = np.maximum(start_x[index], start_x[order[:-1]])
x2 = np.minimum(end_x[index], end_x[order[:-1]])
y1 = np.maximum(start_y[index], start_y[order[:-1]])
y2 = np.minimum(end_y[index], end_y[order[:-1]])

# Compute areas of intersection-over-union
w = np.maximum(0.0, x2 - x1 + 1)
h = np.maximum(0.0, y2 - y1 + 1)
intersection = w * h

# Compute the ratio between intersection and union
ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)

left = np.where(ratio < threshold)
order = order[left]

return picked_boxes, picked_score

# Image name
image_name = 'nms.jpg'

# Bounding boxes
bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]
confidence_score = [0.9, 0.75, 0.8]

# Copy image as original
org = image.copy()

# Draw parameters
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
thickness = 2

# IoU threshold
threshold = 0.4

# Draw bounding boxes and confidence score
for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score):
(w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Run non-max suppression algorithm
picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold)

# Draw bounding boxes and confidence score after non-maximum supression
for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score):
(w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Show image
cv2.imshow('Original', org)
cv2.imshow('NMS', image)
cv2.waitKey(0)```

• 阈值为0.6
• 阈值为0.5
• 阈值为0.4

54 篇文章35 人订阅

0 条评论

## 相关文章

### jsencrypt参数前端加密c#解密

写程序时一般是通过form表单或者ajax方式将参数提交到服务器进行验证，如何防止提交的请求不被抓包后串改，虽然无法说绝对安全却给非法提交提高了难度...

4179

5717

### Luminous版本PG 分布调优

Luminous版本开始新增的balancer模块在PG分布优化方面效果非常明显，操作也非常简便，强烈推荐各位在集群上线之前进行这一操作，能够极大的提升整个集群...

3625

5208

3592

4355

2894

### js登录滑动验证，不滑动无法登陆

js的判断这里是根据滑块的位置进行判断，应该是用一个flag判断 <%@ page language="java" contentType="text/html...

8368

### Mix 10 上的asp.net mvc 2的相关Session

Beyond File | New Company: From Cheesy Sample to Social Platform Scott Hansel...

2767

27110