斯坦福年度AI报告:人工智能全面逼近人类能力?

人工智能有多火,相信铺天盖地的新闻已经证实了这一点,不可否认,我们已经迎来了人工智能的又一次高潮。人工智能会给哪些行业带来新的生命力?它接下来的发展大方向是什么?

今天,珊瑚群创新创业导师为你推荐斯坦福AI Index发布的2017年人工智能指数报告,通过追踪学术、产业、开源软件和公共兴趣的AI活跃度,从专家视角解读AI发展。

来源 |智东西

全文4751字|5分钟阅读

、1.人工智能活跃度一览

AI活跃度指数(来自学术界和工业界数据,如出版物、注册创企和风险投资等)

从学术领域来看

人工智能论文大部分隶属计算机科学的范畴,自1996年至今年度发表的论文数量已经增加9倍,作为参考,计算机科学论文数量此间增加了6倍;

高校机器学习等人工智能相关课程的开设数量和学生的参与度都大幅增加;

人工智能相关的顶级会议也变的火爆,包括如 AAAI、IJCAI、ICML等综合性会议,以及CVPR、ACL、ICRA等专注于通用技术(计算机视觉、自然语言、机器人等)的会议。

从产业领域来看

人工智能相关创企的数量从2000 年以来增加了14倍,风投金额增加了6倍;

在线招聘网站的数据显示2013年以来美国AI相关岗位增长了4.5倍,其中自然语言处理和计算机视觉技能的比重最多;

物流和工业机器人的数量和进出口急剧增加。

从技术成熟度来看

AI里程碑

根据LSVRC竞赛结果,图像标注的误差率从2010年的28.5%降至低于 2.5%;

视觉问答(Visual Question Answering,一种开放式问答)数据集发展出新版本VQA 2.0;

自然语言理解技术范畴下的语法解析(Parsing)、语种互译(Machine Translation)、问答(Question Answering)、语音识别(Speech Recognition)等技术皆逼近人类的能力;

人工智能进行定理证明(Theorem Proving)的可追踪性提高至80%以上,但遇到新的问题解决方案时性能不理想;

SAT(美国学业能力倾向测验)中能回答的问题超过70%,应试竞争力强。

物体检测技术成熟度示意

视觉问答技术成熟度示意

语法解析技术成熟度示意

新闻翻译技术成熟度示意

问答技术成熟度示意

语音识别技术成熟度示意

定理证明能力示意

SAT测试能力示意

2.专家观点

Barbara Grosz(哈佛):小心档口

评估人工智能系统的成熟度很关键的一点是看它能对人类的生活造成怎样的影响。

根据该报告,我们正处在一个机器性能表现逼近人类能力的档口。由于报告相关数据采集涉及的时间节点、标准化测试和地区发展不平衡,我们对机器发展水平的认知可能存在偏差。举个例子,该报告阐述了自然语言理解技术中语法解析、语种互译、问答、语音识别等模块的发展水平,但没有表征聊天机器人的成熟度,也就是多模块结合起来的机器表现。当然,我们首先需要在细分的模块将机器的水准至少提高到人类水平,然后逐渐提高其综合起来的任务解决能力,追求系统的完整性(这又是另一个高难度的问题)。此外,AI指数的评估应考虑系统的设计和伦理挑战,并找到合适的方式追踪人工智能公司的数量和发展。

Eric Horvitz(微软):未来在望

将人工智能界各方指数有效的引入该评估机制中是必要的一步。

AI100项目和这份指数报告将当下的人工智能和未来人工智能的影响连接了起来。根据这份报告,我们看到了很多技术的进展,包括通用技术和机器学习,卷积神经网络等算法,也看到了大规模可用数据对于AI的支持,很多AI应用表现出了落地倾向,比如游戏(西洋棋、围棋、扑克等)、医疗(组织切片、医疗影像等)。人工智能的学术界和产业界,包括人才市场都活跃,也让我们离未来目标更加接近。当然,更明确的AI系统性能标准化测定和评估机制有待建立,这需要各界的参与和支持。AI是一个多维度的命题,也让我们看到了多方面的价值潜力。

李开复(创新工场):关注中国AI

中国国务院宣布计划,在2030年成为人工智能创新中心。

AI100的指数报告主要针对了美国AI发展水平,但我很建议将中国AI市场,这个全球最大的移动端和互联网市场考虑进去,包含手机支付、食物配送、共享单车等庞大的数据量,提供更多的数据和维度。此外,中国的创企表现也相当喜人,比如Face++最近就击败了微软、谷歌、脸书和卡内基梅隆大学拿下三项计算机视觉大奖。中国政府(新一代人工智能发展规划)对科技开放鼓励的态度,以及明确的规划目标(2030年成为AI创新中心)有利于AI的快速和迭代。未来的AI时代,中美双巨头垄断的局面不可避免。

吴恩达(Coursera,斯坦福):“AI新电力”

人工智能是新电力。

深度学习首先改变了语音识别,然后是计算机视觉,渐渐应用于多方面的AI程序,提供AI增长动力。人工智能将逐渐渗透各行各业并引起社会变革,AI指数报告有利于帮助我们理解AI发展现状,并帮助未来的几代人回顾和理解AI的崛起之路。目前,中美正快速的利用投资和收购发展AI产业,英国、加拿大等也贡献了很多开创性的研究成果。AI崛起是全球性的运动,国家政策很大程度影响该国AI发展进程和风险。

Daniela Rus(麻省理工学院):AI是积极的

人工智能将帮助我们更好地理解和解决我们面临的一些大挑战。

科技正为这个世界带来翻天覆地的变化,网络提供了便捷,导师能远程指导手

术,机器人能帮助工厂包装商品,联网传感器能监测设备,3D打印能定制产品。我们被一个充满可能性的世界包围着,人工智能就是一个很积极的可能性,帮助我们解决庞大而复杂的各类命题(比如天气、自然灾害、饥饿等),为我们提供更安全、便利的生活(自动驾驶、医疗、工业机器人、预测危险等)。要实现这些愿景,需要高素质的研究人员和长期的研究创新来解决,这就有劳AI指数继续追踪系列进展了。

Sebastian Thrun(斯坦福):新革命

在这场新革命中,人类的创造力将进入空前的新时代。

人工智能已经发展了60年,并被应用于谷歌搜索的核心算法,亚马逊的网站设计和Netflix的偏好推荐,数据与计算的结合达到了前所未有的规模,并将改变整个社会的格局。AlphaGo打败了围棋世界冠军,AI系统的皮肤癌图像诊断甚至优于很多专业认证的皮肤科医生,我甚至觉得谷歌自动驾驶系统要比一些普通人类司机还靠谱。相信不久的将来,AI将逐渐渗透我们的生活,使我们不必再进行重复性工作,越来越多的机器将帮助我们解放劳动力追求创造性。“蒸汽革命”将重演,就像农民变成工人、律师、会计师、医生、软件工程师等,现在的工作者也将向未来的新工种转换,我们需要掌握新技能和新技术,适应这个变化。

Michael Wooldridge(牛津):当心泡沫

我觉得当前的AI存在泡沫。

本文来自企鹅号 - 珊瑚群媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器人网

人工智能活跃度, 18张分立的视角评估图告诉你

最近,斯坦福“人工智能百年(AI100)”专家小组(非盈利性项目AI Index)发起了一项AI指数报告,追踪学术界、产业界、开源软件和公共兴趣范畴的18个分立...

3428
来自专栏数据科学与人工智能

【数据科学家】九个成为数据科学家的必备技能

本文详细列举了从雇主角度看来,数据科学家加强自身市场竞争力所必备的9个数据科学技能。 过去一年中人们对数据科学的兴趣骤然增长。Nate Silver这个名字已...

28310
来自专栏软件测试经验与教训

测试时间不够怎么办?

3388
来自专栏非著名程序员

如何看待开发人员转型做产品经理?

? 如何看待开发人员转型做产品经理? 之所以谈论如何看待开发人员转型做产品经理这个话题,是因为之前有人在小密圈跟我提问,他想从技术转为做产品,如何转型,我把之...

2028
来自专栏人工智能的秘密

AI指数报告:让我们从18个分立的视角来看AI

最近,斯坦福“人工智能百年(AI100)”专家小组(非盈利性项目AI Index)发起了一项AI指数报告,追踪学术界、产业界、开源软件和公共兴趣范畴的18个分立...

4260
来自专栏达观数据

这项人工智能技术,未来99%的律师都会使用

1958年法国法学家Lucien Mehl就已经提出了法律科学的信息化处理,即建立法律文献和案例自动检索模型。60年的科技发展已经改变了诸多行业的工作方式,人工...

2756
来自专栏机器人网

拥有这十项必备的基本技能,你就是合格的机器人工程师!

机器人是一个复杂而又庞大的系统,涉及很多学科的技术,因此,跟各个细分领域的工程师相比,机器人工程师必须是专才和通才的结合体。那么,机器人工程师到底需要具备哪些基...

2454
来自专栏量子位

吴恩达:企业现在不制定人工智能战略,5年后会后悔

李杉 编译整理 量子位 报道 | 公众号 QbitAI 最近,吴恩达连发7条Twitter大谈了一下“时机”对技术发展的重要性,最后却埋了个大大的悬念: 我对2...

3426
来自专栏华章科技

九个成为数据科学家的必备技能

本文详细列举了从雇主角度看来,数据科学家加强自身市场竞争力所必备的9个数据科学技能。

525
来自专栏DT数据侠

撕掉标签,看小姐姐如何撑起数据科学的“半边天” | 数据科学50人洞见

在数据科学领域,女性从业者的身影仍然很少。为了更加深入地了解这一群体,DT数据侠联合猎聘大数据研究院、科技女性社群LWT发起了数据科学领域女性从业者的调研。

842

扫码关注云+社区