# POJ 刷题系列：3006. Dirichlet's Theorem on Arithmetic Progressions

## POJ 刷题系列：3006. Dirichlet’s Theorem on Arithmetic Progressions

```if (prime - a) % d == 0 说明是递增数列中的一个元素

```import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Map;
import java.util.StringTokenizer;

public class Main{

String INPUT = "./data/judge/201712/P3006.txt";

public static void main(String[] args) throws IOException {
new Main().run();
}

static final int MAX_N = 1000000 + 16;
boolean[] isPrime;
int[] primes;
int tot;

void seive() {
isPrime = new boolean[MAX_N];
primes  = new int[MAX_N];
Arrays.fill(isPrime, true);
for (int i = 2; i < MAX_N; ++i) {
if (isPrime[i]) {
primes[tot++] = i;
for (int j = 2 * i; j < MAX_N; j += i) {
isPrime[j] = false;
}
}
}
}

int solve(int a, int d, int n) {
int ans = 0;
for (int j = 0, i = 0; j < n; ++j, ++i) {
while (primes[i] - a < 0 || (primes[i] - a) % d != 0) {
i ++;
}
ans = primes[i];
}

return ans;
}

seive();
while (true) {
int a = ni();
int d = ni();
int n = ni();
if (a + d + n == 0) break;
out.println(solve(a, d, n));
}
}

FastScanner in;
PrintWriter out;

void run() throws IOException {
boolean oj;
try {
oj = ! System.getProperty("user.dir").equals("F:\\oxygen_workspace\\Algorithm");
} catch (Exception e) {
oj = System.getProperty("ONLINE_JUDGE") != null;
}

InputStream is = oj ? System.in : new FileInputStream(new File(INPUT));
in = new FastScanner(is);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
out.flush();
if (!oj){
System.out.println("[" + (System.currentTimeMillis() - s) + "ms]");
}
}

public boolean more(){
return in.hasNext();
}

public int ni(){
return in.nextInt();
}

public long nl(){
return in.nextLong();
}

public double nd(){
return in.nextDouble();
}

public String ns(){
return in.nextString();
}

public char nc(){
return in.nextChar();
}

class FastScanner {
StringTokenizer st;
boolean hasNext;

public FastScanner(InputStream is) throws IOException {
hasNext = true;
}

public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
} catch (Exception e) {
hasNext = false;
return "##";
}
}
return st.nextToken();
}

String next = null;
public boolean hasNext(){
next = nextToken();
return hasNext;
}

public int nextInt() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Integer.parseInt(more);
}

public long nextLong() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Long.parseLong(more);
}

public double nextDouble() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Double.parseDouble(more);
}

public String nextString(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more;
}

public char nextChar(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more.charAt(0);
}
}

static class D{

public static void pp(int[][] board, int row, int col) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
sb.append(board[i][j] + (j + 1 == col ? "\n" : " "));
}
}
System.out.println(sb.toString());
}

public static void pp(char[][] board, int row, int col) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
sb.append(board[i][j] + (j + 1 == col ? "\n" : " "));
}
}
System.out.println(sb.toString());
}
}

static class ArrayUtils {

public static void fill(int[][] f, int value) {
for (int i = 0; i < f.length; ++i) {
Arrays.fill(f[i], value);
}
}

public static void fill(int[][][] f, int value) {
for (int i = 0; i < f.length; ++i) {
fill(f[i], value);
}
}

public static void fill(int[][][][] f, int value) {
for (int i = 0; i < f.length; ++i) {
fill(f[i], value);
}
}
}

static class Num{
public static <K> void inc(Map<K, Integer> mem, K k) {
if (!mem.containsKey(k)) mem.put(k, 0);
mem.put(k, mem.get(k) + 1);
}
}
}```

98 篇文章33 人订阅

0 条评论

## 相关文章

1314

### Java案例-判断随机整数是否是素数

Java案例-判断随机整数是否是素数 ? 判断随机整数是否是素数 产生 100 个0-999 之间的随机整数，然后判断这100 个随机整数哪些是素数，哪些不是？...

3174

4547

34711

18010

### LeetCode SingleNumber I,II,III

Given a non-empty array of integers, every element appears twice except for one....

1500

701

652

2694

2003