tensorflow学习笔记(四十五):sess.run(tf.global_variables_initializer()) 做了什么?

当我们训练自己的神经网络的时候,无一例外的就是都会加上一句 sess.run(tf.global_variables_initializer()) ,这行代码的官方解释是 初始化模型的参数。那么,它到底做了些什么?

一步步看源代码:(代码在后面)

  • global_variables_initializer 返回一个用来初始化 计算图中 所有global variableop
    • 这个op 到底是啥,还不清楚。
    • 函数中调用了 variable_initializer()global_variables()
  • global_variables() 返回一个 Variable list ,里面保存的是 gloabal variables
  • variable_initializer()Variable list 中的所有 Variable 取出来,将其 variable.initializer 属性做成一个 op group
  • 然后看 Variable 类的源码可以发现, variable.initializer 就是一个 assign op

所以: sess.run(tf.global_variables_initializer()) 就是 run了 所有global Variableassign op,这就是初始化参数的本来面目。

def global_variables_initializer():
  """Returns an Op that initializes global variables.
  Returns:
    An Op that initializes global variables in the graph.
  """
  return variables_initializer(global_variables())

def global_variables():
  """Returns global variables.
  Returns:
    A list of `Variable` objects.
  """
  return ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)

def variables_initializer(var_list, name="init"):
  """Returns an Op that initializes a list of variables.
  Args:
    var_list: List of `Variable` objects to initialize.
    name: Optional name for the returned operation.

  Returns:
    An Op that run the initializers of all the specified variables.
  """
  if var_list:
    return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
  return control_flow_ops.no_op(name=name)
class Variable(object):
    def _init_from_args(self, ...):
        self._initializer_op = state_ops.assign(
            self._variable, self._initial_value,
            validate_shape=validate_shape).op
    @property
    def initializer(self):
        """The initializer operation for this variable."""
        return self._initializer_op

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

TensorFlow官方力推、GitHub爆款项目:用Attention模型自动生成图像字幕

【新智元导读】近期,TensorFlow官方推文推荐了一款十分有趣的项目——用Attention模型生成图像字幕。而该项目在GitHub社区也收获了近十万“点赞...

1662
来自专栏小鹏的专栏

01 TensorFlow入门(2)

Working with Matrices:         了解TensorFlow如何使用矩阵对于通过计算图理解数据流非常重要。 Getting read...

2496
来自专栏有趣的Python

TensorFlow应用实战-8-训练神经网络

2703
来自专栏游戏开发那些事

【小白学游戏常用算法】一、随机迷宫算法

  现在的很多游戏中的地图一般采用格子的方式,虽然在表面地图上无法看到实际的格子,但是在地图的结构中专门有一个逻辑层,这个层和地图大小相等,划出很多小的格子,然...

1302
来自专栏大数据和云计算技术

最小生成树

本篇我们会聊聊最小生成树,最小生成树和之前的无向图最大的区别是这个每一条边都是带有权重的。在聊最小生成树之前 我们要先聊两个理念,因为最小生成树是基于这两...

1041
来自专栏懒人开发

(10.4)James Stewart Calculus 5th Edition:Areas and Lengths in Polar Coordinates

极坐标系中的面积和长度 (这里看见 Coordinates ,就想到了 CoordiateLayout _ ) 我们简单要求一个圆的部分面积

852
来自专栏机器之心

教程 | 利用TensorFlow和神经网络来处理文本分类问题

3347
来自专栏mathor

matlab—影像分析进阶

在这一章里面我们要做的事情全部都围绕两个问题,一个图像当中有多少个xxx,他们的大小是多少,举个例子

1782
来自专栏CreateAMind

keras doc 10终结篇 激活函数 回调函数 正则项 约束项 预训练模型

激活函数可以通过设置单独的激活层实现,也可以在构造层对象时通过传递activation参数实现。

3253
来自专栏人工智能LeadAI

图像学习-验证码识别

这是去年博主心血来潮实现的一个小模型,现在把它总结一下。由于楼主比较懒,网上许多方法都需要切割图片,但是楼主思索了一下感觉让模型有多个输出就可以了呀,没必要一定...

5174

扫码关注云+社区