tensorflow学习笔记(三十九):双向rnn

tensorflow 双向 rnn

如何在tensorflow中实现双向rnn

单层双向rnn

单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.bidirectional_dynamic_rnn(). 我们先来看一下这个接口怎么用.

bidirectional_dynamic_rnn(
    cell_fw, #前向 rnn cell
    cell_bw, #反向 rnn cell
    inputs, #输入序列.
    sequence_length=None,# 序列长度
    initial_state_fw=None,#前向rnn_cell的初始状态
    initial_state_bw=None,#反向rnn_cell的初始状态
    dtype=None,#数据类型
    parallel_iterations=None,
    swap_memory=False,
    time_major=False,
    scope=None
)

返回值:一个tuple(outputs, outputs_states), 其中,outputs是一个tuple(outputs_fw, outputs_bw). 关于outputs_fwoutputs_bw,如果time_major=True则它俩也是time_major的,vice versa. 如果想要concatenate的话,直接使用tf.concat(outputs, 2)即可.

如何使用: bidirectional_dynamic_rnn 在使用上和 dynamic_rnn是非常相似的.

  1. 定义前向和反向rnn_cell
  2. 定义前向和反向rnn_cell的初始状态
  3. 准备好序列
  4. 调用bidirectional_dynamic_rnn
import tensorflow as tf
from tensorflow.contrib import rnn
cell_fw = rnn.LSTMCell(10)
cell_bw = rnn.LSTMCell(10)
initial_state_fw = cell_fw.zero_state(batch_size)
initial_state_bw = cell_bw.zero_state(batch_size)
seq = ...
seq_length = ...
(outputs, states)=tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, seq,
 seq_length, initial_state_fw,initial_state_bw)
out = tf.concat(outputs, 2)
# ....

多层双向rnn

多层双向rnn(cs224d)

单层双向rnn可以通过上述方法简单的实现,但是多层的双向rnn就不能使将MultiRNNCell传给bidirectional_dynamic_rnn了. 想要知道为什么,我们需要看一下bidirectional_dynamic_rnn的源码片段.

with vs.variable_scope(scope or "bidirectional_rnn"):
  # Forward direction
  with vs.variable_scope("fw") as fw_scope:
    output_fw, output_state_fw = dynamic_rnn(
        cell=cell_fw, inputs=inputs, sequence_length=sequence_length,
        initial_state=initial_state_fw, dtype=dtype,
        parallel_iterations=parallel_iterations, swap_memory=swap_memory,
        time_major=time_major, scope=fw_scope)

这只是一小部分代码,但足以看出,bi-rnn实际上是依靠dynamic-rnn实现的,如果我们使用MuitiRNNCell的话,那么每层之间不同方向之间交互就被忽略了.所以我们可以自己实现一个工具函数,通过多次调用bidirectional_dynamic_rnn来实现多层的双向RNN 这是我对多层双向RNN的一个精简版的实现,如有错误,欢迎指出

bidirectional_dynamic_rnn源码一探

上面我们已经看到了正向过程的代码实现,下面来看一下剩下的反向部分的实现. 其实反向的过程就是做了两次reverse 1. 第一次reverse:将输入序列进行reverse,然后送入dynamic_rnn做一次运算. 2. 第二次reverse:将上面dynamic_rnn返回的outputs进行reverse,保证正向和反向输出的time是对上的.

def _reverse(input_, seq_lengths, seq_dim, batch_dim):
  if seq_lengths is not None:
    return array_ops.reverse_sequence(
        input=input_, seq_lengths=seq_lengths,
        seq_dim=seq_dim, batch_dim=batch_dim)
  else:
    return array_ops.reverse(input_, axis=[seq_dim])

with vs.variable_scope("bw") as bw_scope:
  inputs_reverse = _reverse(
      inputs, seq_lengths=sequence_length,
      seq_dim=time_dim, batch_dim=batch_dim)
  tmp, output_state_bw = dynamic_rnn(
      cell=cell_bw, inputs=inputs_reverse, sequence_length=sequence_length,
      initial_state=initial_state_bw, dtype=dtype,
      parallel_iterations=parallel_iterations, swap_memory=swap_memory,
      time_major=time_major, scope=bw_scope)

output_bw = _reverse(
  tmp, seq_lengths=sequence_length,
  seq_dim=time_dim, batch_dim=batch_dim)

outputs = (output_fw, output_bw)
output_states = (output_state_fw, output_state_bw)

return (outputs, output_states)

tf.reverse_sequence

对序列中某一部分进行反转

reverse_sequence(
    input,#输入序列,将被reverse的序列
    seq_lengths,#1Dtensor,表示输入序列长度
    seq_axis=None,# 哪维代表序列
    batch_axis=None, #哪维代表 batch
    name=None,
    seq_dim=None,
    batch_dim=None
)

官网上的例子给的非常好,这里就直接粘贴过来:

# Given this:
batch_dim = 0
seq_dim = 1
input.dims = (4, 8, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]
output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]
output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]
output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

# while entries past seq_lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[1, 2:, :, ...] = input[1, 2:, :, ...]
output[2, 3:, :, ...] = input[2, 3:, :, ...]
output[3, 2:, :, ...] = input[3, 2:, :, ...]

例二:

# Given this:
batch_dim = 2
seq_dim = 0
input.dims = (8, ?, 4, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...]
output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...]
output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...]
output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

# while entries past seq_lens are copied through:
output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...]
output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...]
output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...]
output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]

参考资料

https://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf https://www.tensorflow.org/api_docs/python/tf/reverse_sequence

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

Tensorflow下Char-RNN项目代码详解

前言 Char-RNN,字符级循环神经网络,出自于Andrej Karpathy写的The Unreasonable Effectiveness of Recu...

66110
来自专栏bboysoul

1167: C语言实验题――分数序列

描述:有一个分数序列:2/1, 3/2, 5/3, 8/5, 13/8, …编写程序求出这个序列的前n项之和。 输入:输入只有一个正整数n,1≤n≤10。 ...

983
来自专栏专注研发

poj-3185-开关问题

牛一行20他们喝的水碗。碗可以那么(面向正确的为清凉水)或颠倒的(一个位置而没有水)。他们希望所有20个水碗那么,因此用宽鼻子翻碗。

1133
来自专栏calmound

ZOJ 3194 Coverage(贪心)

题意:对于题目给的点,x固定,而与x组合的y可以任意交换,求如何安置y可使这些点组成线段下面的面积最大,最大面积是多少 分析:可以发现Xn-Xn-1的越大那么乘...

2948
来自专栏机器学习和数学

[编程经验] Tensorflow中的共享变量机制小结

今天说一下tensorflow的变量共享机制,首先为什么会有变量共享机制? 这个还是要扯一下生成对抗网络GAN,我们知道GAN由两个网络组成,一个是生成器网络G...

8203
来自专栏小樱的经验随笔

Vijos P1497 立体图【模拟】

立体图 描述 小渊是个聪明的孩子,他经常会给周围的小朋友们讲些自己认为有趣的内容。最近,他准备给小朋友讲解立体图,请你帮他画出立体图。 小渊有一块面积为m*n的...

3756
来自专栏小小挖掘机

使用Seq2Seq+attention实现简单的Chatbot

本文代码的github连接:https://github.com/princewen/tensorflow_practice/tree/master/chat_...

3.8K6
来自专栏机器学习与自然语言处理

最大子序列和问题之算法优化

算法一:穷举式地尝试所有的可能 int maxSubsequenceSum(const int a[], int n) { int i, j, k; ...

2307
来自专栏C/C++基础

Dijkstra算法求单源最短路径

在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同。如果是一个带权图,那么路径长度为路径上各边的权值的总和。两个顶点间路径长...

3321
来自专栏小鹏的专栏

Tensorflow使用的预训练的resnet_v2_50,resnet_v2_101,resnet_v2_152等模型预测,训练

tensorflow 实现:Inception,ResNet , VGG , MobileNet, Inception-ResNet; 地址: https:/...

1.1K8

扫码关注云+社区

领取腾讯云代金券