实例解析Docker数据卷+数据卷容器+flocker数据共享+DockerHub操作

Docker内部数据管理和Docker之间的数据共享为数据卷和数据卷容器,实例解析1.将本地的文件作为容器的数据卷,2.数据卷flocker插件实现容器集群(或者Docker Swarm)的数据共享3.数据卷容器作为其他容器的数据卷.降低磁盘开销.4.数据的备份,恢复和迁移.5.Docker hub的常用操作.

1.0.数据卷(Data volumes)

Data volumes是一个或者多个容器特别指定的目录,它区别于联合文件系统的(Union File System,或称UnionFS,通过底层的操作的文件系统,具有轻量级和快速的特性,Docker 容器也是使用联合文件系统去创建数据块的.),并且,对容器的数据管理以及容器之间数据共享提供了以下几点: - 当容器被创建的同时,数据卷已经被初始化了.当镜像数据在制定的挂载点上时,存在的数据会复制到新的卷上.(但是,如果挂载的是主机路径不适用) - 容器之间的数据卷可以重用和共享. - 可以直接更改数据卷 - 镜像更新不会更改数据卷. - 容器被删除,数据卷不受影响.

1.1.增加一个数据卷

docker createdocker run命令中,使用-v 为容器增加一个数据卷.

wxl@wxl-pc:~$ docker run -d -P --name myweb -v /webapp training/webapp python app.py

可见.把training/webapp命名为myweb,并且通过-v创建了数据卷 /webapp

  • Tip,在Dockerfile创建新的容器时,可以通过-v来创建更多的数据卷.

1.2.查看创建信息

wxl@wxl-pc:~$ docker inspect myweb

其中,Mount信息,包含了刚刚创建的数据卷详细信息.source指定了本机路径,而Destination则指定容器内部路径.

1.3.本机路径作为容器数据卷

将本机的路径如/src/webapp作为volumeweb的数据卷.这样做的好处是,如果本地有代码可很方便在本地修改,在容器里查看修改后的效果.

wxl@wxl-pc:~$ docker run -d -P --name volumeweb -v /src/webapp:/opt/webapp training/webapp python app.py

3206809decc4145427cb1f300d05a55aae88a6fffc33596e773dbd023746e479

#查看
wxl@wxl-pc:~$ docker inspect volumeweb

1.4.设置本地路径的权限,默认是rw读写模式,可以制定能如ro只读模式

wxl@wxl-pc:~$ docker run -d -P --name volumeweb -v /src/webapp:/opt/webapp:ro training/webapp python app.py

仅仅在/src/webapp:/opt/webapp:ro 增加了ro,指明只读模式.

1.5.挂载主机文件作为数据卷

使用-v标志可以挂载单一文件,如将主机的bash_history文件内容,添加至新创建的容器中,此时新创建的容器的bash_history中的记录删除而存上主机bash_history的内容.

wxl@wxl-pc:~$ docker run --rm -it -v ~/.bash_history:/root/.bash_history ubuntu:14.04 /bin/bash

2.flocker插件实现容器集群的数据管理,共享和迁移等.(如果未配置Docker Swarm,建议跳过本步骤)

挂载一个共享数据作为Docker容器的数据卷 容器除了可以在本机上的路径作为数据卷外,还可以通过Docker volume plugins来允许一些共享数据作为数据卷,如iSCSI,NFS或者FC.这样做的好处是,共享的数据卷的位置不受容器的影响,而且只要某个容器拥有volume plugins并且能够访问,就可以将共享数据卷作为该容器的数据卷.

2.1.安装Docker容器卷驱动flocker

数据卷的一个插件,用来管理共享数据,支持容器之间(容器集群)的共享数据进行迁移,打包. 注意:a.最后一步下载flocker插件时,可能因为网速而下载时间很长,建议下载的flocker时跳过.Docker 数据卷flocker插件实现容器集群的数据管理,共享和迁移等.步骤,不影响后续操作.b.本过程需要flocker正确安装,Dcoker集群环境,如果提示没有flocker插件错误,可以跳过本步骤,Docker Swarm不是本次解析重点.

wxl@wxl-pc:~$ sudo apt-get update

wxl@wxl-pc:~$ sudo apt-get -y install apt-transport-https software-properties-common

wxl@wxl-pc:~$ sudo add-apt-repository -y "deb https://clusterhq-archive.s3.amazonaws.com/ubuntu/$(lsb_release --release --short)/\$(ARCH) /"

wxl@wxl-pc:~$ cat <<EOF > /tmp/apt-pref
> Package: *
> Pin: origin clusterhq-archive.s3.amazonaws.com
> Pin-Priority: 700
> EOF

wxl@wxl-pc:~$ sudo mv /tmp/apt-pref /etc/apt/preferences.d/buildbot-700

wxl@wxl-pc:~$ sudo apt-get update
#下载速度很慢,根据网速而定.
wxl@wxl-pc:~$ sudo apt-get -y install --force-yes clusterhq-flocker-cli

安装Flocker Node Services(略过,过程繁琐,不再赘述,可以去clusterhq官方文档查看.)

wxl@wxl-pc:~$ docker volume create -d flocker --name my-named-volume -o size=20GB


wxl@wxl-pc:~$ docker run -d -P \
> -v my-named-volume:/opt/webapp \
> --name web training/webapp python app.py

本过程需要flocker正确安装,Dcoker集群环境,如果提示没有flocker插件错误,可以跳过本步骤,Docker Swarm不是本次解析重点.

3.创建一个新的数据卷容器,作为其他应用层容器的数据卷

创建新的数据卷的容器目的是,方便一些持久性(存储)的数据在容器和容器之间共享. 使用postgres镜像创建一个数据卷容器,该容器没有应用运行,所以,其他容器的可以作为应用层,而存储的数据放在数据卷容器中,这样可以节省磁盘空间.

3.1.创建新的数据卷容器dbstore

wxl@wxl-pc:~$ docker create -v /dbdata --name dbstore training/postgres /bin/true

3.2.使用--volumes-from可以将dbdata容器中的数据卷/dbdata挂载到另一个容器中(db1).

wxl@wxl-pc:~$ docker run -d --volumes-from dbstore --name db1 training/postgres

3.3.将dbstore挂载到db2容器中.

docker run -d --volumes-from dbstore --name db2 training/postgres

3.4.通过已经挂载的容器扩展挂载(如,db3通过db1或者db2来挂载dbstore数据卷容器)

如果,删除容器db1或者容器db2,数据卷是不会被删除的,如果在磁盘上删除数据卷,必须显示调用docker rm -v加上数据卷.

3.5.注意,如果删除含有数据卷的容器,在删除容器时没有使用-v标志,这些数据卷会成为dangling状态

a.显示所以没有挂载到容器上的数据卷

docker volume ls -f dangling=true

b.删除这些dangling状态的数据卷

docker volume rm <volume name>

4.0.备份,恢复,迁移数据卷

Docker容器的数据卷备份,恢复,迁移一般是通过--volumes-from标志实现的.

4.1.备份,创建一个新容器,在新容器挂载dbstore数据卷容器,并将dbstore数据卷打包为backup.tar文件,备份至新创建的容器中.

wxl@wxl-pc:~$ docker run --rm --volumes-from dbstore -v $(pwd):/backup ubuntu:14.04 tar cvf /backup/backup.tar /dbdata

4.2.恢复,通过-v标志,将数据恢复到同一个容器或者其他任意容器.

wxl@wxl-pc:~$ docker run -v /dbdata --name dbstore2 ubuntu:14.04 /bin/bash

4.3.迁移,其实就是通过解压方式,将dbstore数据卷容器的数据解压至一个新的容器.

wxl@wxl-pc:~$ docker run --rm --volumes-from dbstore2 -v $(pwd):/backup ubuntu:14.04 bash -c "cd /dbdata && tar xvf /backup/backup.tar --strip 1"

5.Docker Hub常见操作

Docker Hub是Docker官方提供的容器管理工程,类似与github,不同在于在Docker Hub中搜索存放的不是源码而是容器. Docker Hub可以存放我们创建的容器,如果是公开的则大家都以拿来用,也支持不公开.

5.1.首先注册Docker Hub账号,然后登陆

wxl@wxl-pc:~$ docker login

登陆信息存放在了$HOME/.docker/config.json下.

5.2.查找并下载需要的容器

#查找
wxl@wxl-pc:~$ docker search centos
#下载
wxl@wxl-pc:~$ docker pull centos

5.3.推送到Docker Hub上

使用docker push yourname/newimage来push自己的容器到hub上.

wxl@wxl-pc:~$ docker push mycentos:mydev

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏张善友的专栏

Miguel de Icaza 细说 Mix 07大会上的Silverlight和DLR

Mono之父Miguel de Icaza 详细报道微软Mix 07大会上的Silverlight和DLR ,上面还谈到了Mono and Silverligh...

2997
来自专栏java 成神之路

使用 NIO 实现 echo 服务器

5567
来自专栏转载gongluck的CSDN博客

cocos2dx 打灰机

#include "GamePlane.h" #include "PlaneSprite.h" #include "BulletNode.h" #include...

7206
来自专栏一个爱瞎折腾的程序猿

sqlserver使用存储过程跟踪SQL

USE [master] GO /****** Object: StoredProcedure [dbo].[sp_perfworkload_trace_s...

2870
来自专栏一个会写诗的程序员的博客

Spring Reactor 项目核心库Reactor Core

Non-Blocking Reactive Streams Foundation for the JVM both implementing a Reactiv...

2792
来自专栏魂祭心

原 canvas绘制clock

5124
来自专栏Golang语言社区

【Golang语言社区】GO1.9 map并发安全测试

var m sync.Map //全局 func maintest() { // 第一个 YongHuomap := make(map[st...

5458
来自专栏张善友的专栏

Silverlight + Model-View-ViewModel (MVVM)

     早在2005年,John Gossman写了一篇关于Model-View-ViewModel模式的博文,这种模式被他所在的微软的项目组用来创建Expr...

3278
来自专栏我和未来有约会

Kit 3D 更新

Kit3D is a 3D graphics engine written for Microsoft Silverlight. Kit3D was inita...

2936
来自专栏Ceph对象存储方案

Luminous版本PG 分布调优

Luminous版本开始新增的balancer模块在PG分布优化方面效果非常明显,操作也非常简便,强烈推荐各位在集群上线之前进行这一操作,能够极大的提升整个集群...

3675

扫码关注云+社区