Apache Beam WordCount编程实战及源码解读

概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并可以运行大数据处理引擎上。完整项目Github源码

负责公司大数据处理相关架构,但是具有多样性,极大的增加了开发成本,急需统一编程处理,Apache Beam,一处编程,处处运行,故将折腾成果分享出来。

1.Apache Beam编程实战–前言,Apache Beam的特点与关键概念。

Apache Beam 于2017年1月10日成为Apache新的顶级项目。

1.1.Apache Beam 特点:

  • 统一:对于批处理和流媒体用例使用单个编程模型。
  • 方便:支持多个pipelines环境运行,包括:Apache Apex, Apache Flink, Apache Spark, 和 Google Cloud Dataflow。
  • 可扩展:编写和分享新的SDKs,IO连接器和transformation库 部分翻译摘自官网:Apacher Beam 官网

1.2.Apache Beam关键概念:

1.2.1.Apache Beam SDKs

主要是开发API,为批处理和流处理提供统一的编程模型。目前(2017)支持JAVA语言,而Python正在紧张开发中。

1.2.2. Apache Beam Pipeline Runners(Beam的执行器/执行者们),支持Apache Apex,Apache Flink,Apache Spark,Google Cloud Dataflow多个大数据计算框架。可谓是一处Apache Beam编程,多计算框架运行。

1.2.3. 他们的对如下的支持情况详见

2.Apache Beam编程实战–Apache Beam源码解读

基于maven,intellij IDEA,pom.xm查看 完整项目Github源码 。直接通过IDEA的项目导入功能即可导入完整项目,等待MAVEN下载依赖包,然后按照如下解读步骤即可顺利运行。

2.1.源码解析-Apache Beam 数据流处理原理解析:

关键步骤:

  • 创建Pipeline
  • 将转换应用于Pipeline
  • 读取输入文件
  • 应用ParDo转换
  • 应用SDK提供的转换(例如:Count)
  • 写出输出
  • 运行Pipeline

2.2.源码解析,完整项目Github源码,附WordCount,pom.xml等

/**
 * MIT.
 * Author: wangxiaolei(王小雷).
 * Date:17-2-20.
 * Project:ApacheBeamWordCount.
 */


import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Aggregator;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;


public class WordCount {

    /**
     *1.a.通过Dofn编程Pipeline使得代码很简洁。b.对输入的文本做单词划分,输出。
     */
    static class ExtractWordsFn extends DoFn<String, String> {
        private final Aggregator<Long, Long> emptyLines =
                createAggregator("emptyLines", Sum.ofLongs());

        @ProcessElement
        public void processElement(ProcessContext c) {
            if (c.element().trim().isEmpty()) {
                emptyLines.addValue(1L);
            }

            // 将文本行划分为单词
            String[] words = c.element().split("[^a-zA-Z']+");
            // 输出PCollection中的单词
            for (String word : words) {
                if (!word.isEmpty()) {
                    c.output(word);
                }
            }
        }
    }

    /**
     *2.格式化输入的文本数据,将转换单词为并计数的打印字符串。
     */
    public static class FormatAsTextFn extends SimpleFunction<KV<String, Long>, String> {
        @Override
        public String apply(KV<String, Long> input) {
            return input.getKey() + ": " + input.getValue();
        }
    }
    /**
     *3.单词计数,PTransform(PCollection Transform)将PCollection的文本行转换成格式化的可计数单词。
     */
    public static class CountWords extends PTransform<PCollection<String>,
            PCollection<KV<String, Long>>> {
        @Override
        public PCollection<KV<String, Long>> expand(PCollection<String> lines) {

            // 将文本行转换成单个单词
            PCollection<String> words = lines.apply(
                    ParDo.of(new ExtractWordsFn()));

            // 计算每个单词次数
            PCollection<KV<String, Long>> wordCounts =
                    words.apply(Count.<String>perElement());

            return wordCounts;
        }
    }

    /**
     *4.可以自定义一些选项(Options),比如文件输入输出路径
     */
    public interface WordCountOptions extends PipelineOptions {

        /**
         * 文件输入选项,可以通过命令行传入路径参数,路径默认为gs://apache-beam-samples/shakespeare/kinglear.txt
         */
        @Description("Path of the file to read from")
        @Default.String("gs://apache-beam-samples/shakespeare/kinglear.txt")
        String getInputFile();
        void setInputFile(String value);

        /**
         * 设置结果文件输出路径,在intellij IDEA的运行设置选项中或者在命令行中指定输出文件路径,如./pom.xml
         */
        @Description("Path of the file to write to")
        @Required
        String getOutput();
        void setOutput(String value);
    }
    /**
     * 5.运行程序
     */
    public static void main(String[] args) {
        WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation()
                .as(WordCountOptions.class);
        Pipeline p = Pipeline.create(options);

        p.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
                .apply(new CountWords())
                .apply(MapElements.via(new FormatAsTextFn()))
                .apply("WriteCounts", TextIO.Write.to(options.getOutput()));

        p.run().waitUntilFinish();
    }
}

3.支持Spark,Flink,Apex等大数据数据框架来运行该WordCount程序。完整项目Github源码(推荐,注意pom.xml模块加载是否成功,在工具中开发大数据程序,利于调试,开发体验较好)

3.1.intellij IDEA(社区版)中Spark大数据框架运行Pipeline计算程序

  • Spark运行
    • 设置VM options -DPspark-runner
    • 设置Programe arguments --inputFile=pom.xml --output=counts

3.2.intellij IDEA(社区版)中Apex,Flink等支持的大数据框架均可运行WordCount的Pipeline计算程序,完整项目Github源码

  • Apex运行
    • 设置VM options -DPapex-runner
    • 设置Programe arguments --inputFile=pom.xml --output=counts
  • Flink运行等等
    • 设置VM options -DPflink-runner
    • 设置Programe arguments --inputFile=pom.xml --output=counts

4.终端运行(Terminal)(不推荐,第一次下载过程很慢,开发体验较差)

4.1.以下命令是下载官方示例源码,第一次运行下载较慢,如果失败了就多运行几次,(推荐下载,完整项目Github源码)直接用上述解读在intellij IDEA中运行。

mvn archetype:generate       -DarchetypeRepository=https://repository.apache.org/content/groups/snapshots       -DarchetypeGroupId=org.apache.beam       -DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples       -DarchetypeVersion=LATEST       -DgroupId=org.example       -DartifactId=word-count-beam       -Dversion="0.1"       -Dpackage=org.apache.beam.examples       -DinteractiveMode=false

4.2.打包并运行

mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount      -Dexec.args="--runner=SparkRunner --inputFile=pom.xml --output=counts" -Pspark-runner

4.3.成功运行结果

4.3.1.显示运行成功

4.3.2.WordCount输出计算结果

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏腾讯Bugly的专栏

Bugly即将支持的ANR,精神哥告诉你是个什么鬼?

上帝说要有ANR,于是Bugly就有了ANR上报,那么ANR到底是什么? 最近很多童鞋问起精神哥ANR的问题,那么这次就来聊一下,鸡爪怎么泡才好吃...

3704
来自专栏Java编程技术

异步打印日志的一点事

最近刚刚结束转岗以来的第一次双11压测,收获颇多,难言言表, 本文就先谈谈异步日志吧,在高并发高流量响应延迟要求比较小的系统中同步打日志已经满足不了需求了,同步...

501
来自专栏aCloudDeveloper

DPDK virtio-user

3523
来自专栏开发与安全

linux系统编程之进程(一):进程基本概述

一、什么是进程 从用户的角度来看进程是程序的一次执行过程。 从操作系统的核心来看,进程是操作系统分配的内存、CPU时间片等资源的基本单位。 进程是资源分配的...

19710
来自专栏腾讯Bugly的专栏

《手Q Android线程死锁监控与自动化分析实践》

手Q每个版本上线以后研发同学都会收到各种问题反馈。在跟进手Q内部用户反馈的问题时,发现多例问题,其表象和原因如下:

4316
来自专栏xingoo, 一个梦想做发明家的程序员

大数据之Yarn——Capacity调度器概念以及配置

试想一下,你现在所在的公司有一个hadoop的集群。但是A项目组经常做一些定时的BI报表,B项目组则经常使用一些软件做一些临时需求。那么他们肯定会遇到同时提交...

2479
来自专栏腾讯Bugly的专栏

《手Q Android线程死锁监控与自动化分析实践》

一、问题背景 手Q每个版本上线以后研发同学都会收到各种问题反馈。在跟进手Q内部用户反馈的问题时,发现多例问题,其表象和原因如下: 1、问题表象:“未读不消失”、...

3259
来自专栏IT笔记

从构建分布式秒杀系统聊聊线程池

1725
来自专栏Laoqi's Linux运维专列

nginx之php-fpm优化

3307
来自专栏数据之美

linux 系统监控、诊断工具之 top 详解

接触 linux 的人对于 top 命令可能不会陌生(不同系统名字可能不一样,如 IBM 的 aix 中叫 topas ),它的作用主要用来监控系统实时负载率、...

2255

扫码关注云+社区