婚姻关系的建模分析

关于婚姻,有如下的话:

Marriage can take “work”. The first year is the hardest. People learn to get along and love is a practice-you must express love through living it to make it grow stronger. 婚姻需要一定的“努力”。 婚姻的第一年往往是最难的。 夫妻双方需要去努力相处,通过日常生活的点点滴滴表达彼此的爱意让爱情愈发强壮。

那么,这种婚姻关系,该如何去评估呢? 本文,以消费者理论为依据,通过构建夫妻双方的utility模型,较为准确地评估这一婚姻状况。

模型建立

有一对恋人结成夫妻,男的叫A,女的叫B。分别对两者的utility建模,得到:

s.t.Ua=xa+α0∗(ya+yb)Ub=xb+β0∗(ya+yb)α0∈(0,1)β0∈(0,1)α0+β0≥1xa+ya=1xb+yb=1

\begin{split} &U_a = x_a+\alpha_0*(y_a+y_b) \\ &U_b = x_b+\beta_0*(y_a+y_b) \\ s.t. &\alpha_0 \in (0,1) \\ &\beta_0 \in (0,1) \\ &\alpha_0+\beta_0 \ge 1 \\ &x_a + y_a =1 \\ &x_b + y_b = 1 \end{split}

下面,对上述模型做简要的阐释。

Ua,UbU_a,U_b分别是A和B的utility(效用)值,通俗的理解是,该值越大表示A或B越开心。该值的大小取决于4个自变量,分别是xa,xbx_a,x_b(表示对自己的关心值),ya,yby_a,y_b(表示对另一半的关心值)。限制条件xa+ya=1xb+yb=1x_a + y_a =1x_b + y_b = 1表示人的精力是有限的,需要在自己和对方之间进行合理的分配。

特殊情况分析

婚姻关系也可以理解成一种博弈关系。博弈的主题是如何让自己在婚姻关系中收获最大。

帕累托最优

Pareto Efficient指的是:一方得利时,必然会损害另一方的利益的状态。

上面的公式经过变化为:

Ua=(1−α0)∗xa+(2−xb)∗α0Ub=(1−β0)∗xb+(2−xa)∗β0

\begin{split} U_a = (1-\alpha_0)*x_a+(2-x_b)*\alpha_0\\ U_b = (1-\beta_0)*x_b+(2-x_a)*\beta_0 \end{split}

以UaU_a为例分析,提升A幸福度只有两种方法:增大xax_a或者减少xbx_b,这两种方法都会损害B的利益(降低UbU_b)。分析UbU_b同理。

也就是说:不论在任何情况下,一方利益的提升都是以牺牲另一方的利益为损失的。

因此,任何情况下都是帕累托最优

纳什均衡

纳什均衡指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。

以UaU_a为例分析,最优的选择一定在边界上,边界情况如下表,可以看到无论B做什么选择,A的最佳选择都是xa=1x_a=1,也就是最自私的情况。

XaX_a

0

1

XbX_b

0

2α02\alpha_0

1+α01+\alpha_0

1

α0\alpha_0

1

UbU_b同理,最后两者达到了纳什均衡。

同时,对公式进行分析的话,A只能控制xax_a而控制不了xbx_b,因此只有将xax_a变得最大xa=1x_a=1才能实现自己的利益。

因此,纳什均衡条件下的allocation是:xa=1,ya=0,xb=1,yb=0x_a =1, y_a =0, x_b =1, y_b=0。

两种婚姻的对比分析

这里分析两种婚姻:

  1. 夫妻双方完全为自己(x=1,y=0x=1,y=0)。
  2. 夫妻双方完全为对方(x=0,y=1x=0,y=1)。

完全为自己

这种情况下,达到了纳什均衡。

最后两者的效用函数为Ua=1,Ub=1U_a=1,U_b=1。

完全为对方

这种情况下,两者的效用函数为Ua=2α0,Ub=2β0U_a=2\alpha_0,U_b=2\beta0。

囚徒困境

如果α0>12,β0>12\alpha_0>\frac{1}{2},\beta_0>\frac{1}{2},那么夫妻双方则陷入了囚徒困境,也就是说:每个人都只关心着自己的利益,最后却得到了较差的结果,反而为对方考虑的情况能使双方的效用函数值最大,也更开心一些。

婚姻的阶段性分析

模型延伸

阶段性分析需要阐述三点内容:

  1. 婚姻需要彼此的努力
  2. 婚姻头几年往往最难
  3. 婚姻越往后越简单越自然

因此,对模型做简单的延伸:α和β\alpha和\beta表示双方的感情程度,越高表示对彼此的感情越深;刚结婚时α0=12,β0=12\alpha_0=\frac{1}{2},\beta_0=\frac{1}{2}。以后每年变化一次,从tt年到t+1t+1年变化如下:

αt+1=αt2+yb2βt+1=βt2+ya2

\begin{split} \alpha_{t+1} = \frac{\alpha_t}{2} + \frac{y_b}{2} \\ \beta_{t+1} = \frac{\beta_t}{2} + \frac{y_a}{2} \end{split}

也就是说,新一年的感情程度是前一年的感情程度与对方对感情付出值的简单平均值。

下面,对婚姻进行阶段性的分析。

婚姻需要努力

首先先看第一年的分析表:

对A来说,UaU_a的值如下:

XaX_a

0

1

difference

XbX_b

0

1

1.5

0.5

1

0.5

1

0.5

可以看到,无论B做什么,A如果只考虑自己的利益,那么最优选择都是xa=1x_a=1,也就是只关心自己,完全不对对方付出。

而且因为两种决策的结果差值比较大(0.5,0.5),因此A在决定要完全忠于对方,把心都用在对方身上的时候,下的决心和努力也是最大的。

先难后易

如果双方都对对方完全付出,之后几年的情况如下:

t=1t=1

XaX_a

0

1

difference

XbX_b

0

1.5

1.75

0.25

1

0.75

1

0.25

t=2t=2

XaX_a

0

1

difference

XbX_b

0

1.75

1.875

0.125

1

0.875

1

0.125

t=6t=6

XaX_a

0

1

difference

XbX_b

0

1.9844

1.9922

0.0078

1

0.9922

1

0.0078

爱情密切程度与困难程度随着时间推移的变化情况如下图:

容易发现:对A来说一方面爱情越来越密切,另一方面不同的决定差值正在变得越来越小,越来越微不足道。

也就是说,婚姻刚开始的阶段维持对对方的付出很苦难,因为需要面对对方不付出自己单独付出的损失,但是如果两个人彼此信任彼此扶持。那么随着时间的推移,对对方付出变得没有那么“困难”了,反而是一件很简单很平常的事情。而且因为彼此的付出与信任,两个人都脱离了囚徒困境,实现了个人和集体utility值的最大化。

结论

以海灵格的一句话做结吧:良好持久的关系是一方付出了一些,另一方回报的时候稍稍多一些,然后这一方再稍稍多一些,这样是使关系能健康维持下去的保障。

希望天下有情人终成眷属!

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能快报

科学家提出量子生物识别技术

美国《麻省理工学院技术评论》杂志发表文章,称科学家已经提出了量子生物识别技术。 在安全性方面,量子世界提供了无与伦比的财富。例如,根据物理学定律,量子密码能够提...

3117
来自专栏人工智能头条

华为诺亚方舟实验室主任李航:迎接自然语言处理新时代

1704
来自专栏AI科技评论

开发 | Theano停止更新之后,开发者们怎么说?

关于深度学习的框架之争一直都没停止过,每隔一阵大家就要进行一次框架大讨论: TensorFlow的使用者虽多,又有谷歌的背书,但真的很!难!用! Pytorch...

35110
来自专栏华章科技

豆瓣还是朋友圈:大数据、新方法和日常问

问题来了,怎么才能设计一种实证策略,把这两种效应区分开呢?这是Gilchrist和Sands在Journal of Political Economy即将刊出的...

713
来自专栏专知

机器学习是“炼金术”?

1386
来自专栏AI科技大本营的专栏

AI 每周必读:The Ones

【AI100 导读】选 CNN 模型还是 RNN 模型?对于初学者来说,这是个很困难的问题。读博还是赌博?李沐写下了自己的经历,也许会有一些启发。 1. One...

2584
来自专栏思影科技

PTSD的心理治疗对前额皮层功能的选择性影响

暴露疗法是创伤后应激障碍(PTSD)的有效治疗方法,但心理治疗究竟如何影响仍缺乏综合的、以情绪为重点理解。来自斯坦福大学精神病和行为科学部的Gregory A....

3879
来自专栏大数据文摘

顶尖人工智能无法识别这些简单图像

1574
来自专栏新智元

【实测】谷歌翻译特朗普就职演讲,正确率如何(附技术原理解析)

【新智元导读】 美国新总统特朗普1月21日发表就职演讲,讲话内容受到国内高度关注。新智元使用谷歌翻译对特朗普就职演讲的内容进行了翻译实测,发现谷歌翻译的准确率相...

3278
来自专栏AI科技评论

IJCAI2016论文前瞻 | 从吃豆人到星际争霸,人工智能在一些游戏上已经玩得和人类玩家一样好了

编者注:《吃豆人》是一款由南梦宫公司制作的街机游戏,游戏最初于1980年5月22日在日本发行。本游戏由南梦宫公司的岩谷彻设计,游戏于1980年10月由Midwa...

31910

扫码关注云+社区