一文搞懂算法的时间复杂度与空间复杂度

一 时间复杂度的概念

  一般情况下,算法的基本操作重复执行的次数是模块n的某一函数f(n),因此,算法的时间复杂度记做 T(n) = O(f(n))。 随着模块n的增大,算法执行的时间增长率f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。   时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)   举个简单的例子:

int value = 0;                    // 执行了1次
for (int i = 0; i < n; i++) {     // 执行了n次
    value += i;
}

  这个算法执行了 1 + n 次,如果n无限大,我们可以把前边的1忽略,也就是说这个算法执行了n次。时间复杂度常用大O符号表示,这个算法的时间复杂度就是O(n)。

二 计算时间复杂度

  1. 计算出基本操作的执行次数T(n)   基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。
  2. 计算出T(n)的数量级   求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数,令f(n)=T(n)的数量级。
  3. 用大O来表示时间复杂度   当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。   只保留最高阶项,最高阶项存在且不是1,则去除与这个项相乘的常数。

用一个例子来表明以上的步骤:

for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  } 

第一步计算基本语句执行次数:T(n)= n^2+n^3; 第二步T(n)的同数量级,我们可以确定 n^3为T(n)的同数量级; 第三步用大O表示时间复杂度:T(n)=O(n^3)。

三 常见的时间复杂度

执行次数函数

名称

3

O(1)

常数阶

2n+3

O(n)

线性阶

3n2+2n+1

O(n2)

平方阶

5log2n+2

O(log2n)

对数阶

2n+3nlog2n+1

O(nlogn)

nlog2n阶

6n3+2n2+3n+4

O(n3)

立方阶

2n

O(2n)

指数阶

最常见的多项式时间算法复杂度关系为:

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3)

指数时间算法复杂度关系为:

O(2n) < O(n!)< O(nn)

举个例子来说明上述的时间复杂度:

i=1;       // 执行次数:1
while (i<=n)
   i=i*2;  
   // 频度为f(n),2^f(n)<=n;f(n)<=log2n
   // 每次i*2后,距离结束循环更近了。也就是说有多少个2相乘后大于n。
   // 取最大值f(n)=log2n,T(n)=O(log2n )

四 复杂情况的时间复杂度分析

1.并列循环复杂度分析

for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
          x++;     //O(n2)

2.函数调用的复杂度分析

public void printsum(int count){
    int sum = 1;
    for(int i= 0; i<n; i++){
       sum += i;
    }   
    System.out.print(sum);
}

  记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。   所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

五 空间复杂度

  空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。   比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。   例如关于O(1)的问题, O(1)是说数据规模和临时变量数目无关,并不是说仅仅定义一个临时变量。举例:无论数据规模多大,我都定义100个变量,这就叫做数据规模和临时变量数目无关。就是说空间复杂度是O(1)。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏开发与安全

算法:队列与广度优先搜索(迷宫问题)

队列也是一组元素的集合,也提供两种基本操作:Enqueue(入队)将元素添加到队尾,Dequeue(出队)从队头取出元素并返回。就像排队买票一样,先来先服务,先...

2397
来自专栏小樱的经验随笔

Gym 100952C&&2015 HIAST Collegiate Programming Contest C. Palindrome Again !!【字符串,模拟】

C. Palindrome Again !! time limit per test:1 second memory limit per test:64 meg...

2453
来自专栏机器学习算法全栈工程师

最长公共子序列与最长公共子串

0. 引言 最近鄙人面试百度,出了这道求解公子序列长度的算法题。故此总结一下,这是一个很典型的题目,希望对大家将来的面试中能起到学习的作用。 1. 问题描述 子...

34911
来自专栏King_3的技术专栏

leetcode-258-Add Digits

1844
来自专栏AI研习社

如何准备机器学习工程师的面试?

本文给到的是相关具体可能会被问及的问题 (编程、基础算法、机器学习算法)。从本次关于算法工程师常见的九十个问题大多是各类网站的问题汇总,希望你能从中分析出一些端...

36916
来自专栏用户2442861的专栏

动态规划算法学习

http://blog.csdn.net/nevasun/article/details/6977511

754
来自专栏余林丰

12.高斯消去法(1)——矩阵编程基础

对于一阶线性方程的求解有多种方式,这里将介绍利用高斯消去法解一阶线性方程组。在介绍高斯消去法前需要对《线性代数》做一下温习,同时在代码中对于矩阵的存储做一个简...

1997
来自专栏King_3的技术专栏

leetcode-888-公平的糖果交换

爱丽丝和鲍勃有不同大小的糖果棒:A[i] 是爱丽丝拥有的第 i 块糖的大小,B[j] 是鲍勃拥有的第 j 块糖的大小。

341
来自专栏专注研发

(floyd)佛洛伊德算法

Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法。从表...

723
来自专栏aCloudDeveloper

算法导论第十五章 动态规划

      写在前面:从本章开始,算法导论章节进入第四部分:高级设计和分析技术。在读的过程中,可以明显感觉到本章内容跟之前章节的内容要复杂得多。这么来说,之前章...

1815

扫码关注云+社区