肤色检测算法 - 基于二次多项式混合模型的肤色检测。

   由于能力有限,算法层面的东西自己去创新的很少,很多都是从现有的论文中学习,然后实践的。

      本文涉及的很多算法,在网络上也有不少同类型的文章,但是肯定的一点就是,很多都是不配代码的,或者所附带的代码都是象征性的,速度慢,不优雅,不具有实用价值,本文努力解决这些问题。

      文中各算法出现的顺序并不代表算法的优越性,仅仅是作者随机排布的而已。

      1、二次多项式混合模型

       二次多项式混合模型首先有SORIANO提出,此后CHIANG对此进行了改进。改进后的模型由两个R-G平面的二次多项式和一个圆方程构成:

  在以上三个方程的基础上,肤色区域可以通过一下规则实现:

上述算法的参考论文:Adaptive skin color modeling using the skin locus.pdf  

A novel method for detecting lips,eyes and faces in real time

  以及百度文库相关文章:基于混合肤色模型的快速人脸检测算法

     上式中,小写r,g,b(未涉及)为对R/G/B(byte类型的数据,0-255)进行归一化后的数据,即:

  如上所示,算法中涉及到了不少的浮点运算,以及大量的乘法,如果按照源汁原味的来编写代码,程序的效率可想而知。因此,我们着手于算法的优化。

     首先,我们来看四个判断条件,由于判断条件是不分先后,需要同时满足的地方才是区域,因此应该把简单的判断条件放在最前面判断。

     首先看如果符合了判断条件R4,条件R3中的R>G肯定是已经成立的,则只需要判断G是否大于B,这是优化手段1。   

     然后我们来看R2的优化,为方便表达,我们这里令Sum=R+G+B,将判断条件R2展开:

  上式子最后一步同时乘以156, 理论上说156×0.33=51.48,不应该取52的,不过这个0.33本来就是个经验数据,谁说不能是1/3呢。

     到此,我们看到在式子的最右侧还有个浮点数0.0624,如果不消除该数据,算法速度依旧会有大的影响,常常研究移位的朋友肯定对0.0625这个数字很熟悉,1/16=0.0625,不是吗,懂了吗,还不懂,看代码吧(这里的式子很多都是经验公式,因此,稍微修改一些参数对结果基本无影响)。

     上述这样做的目的,无非是将浮点数的运算全部转换为整数的运算。

  最后来看式R1的优化,R1实际上也是两个条件,把他分开来,分别称为R11及R12,对于R11,同样展开:

     现在大部分的PC都还是32位的系统,因此,使用32位的整数类数据类型速度是最快的,因此,如果上述放大系数的取夺就必须主要使得计算式两边的值都在int.MinValue和 int.MaxValue之间,比如上式,>号左侧算式的肯能最大取值为10000×255×765,是小于int.MaxValue所能表达的范围的,因此放大系数是合理的。

     对于R12的展开我想应该不需要我在去贴出来了吧。

     算法部分参考代码:

for (Y = 0; Y < Height; Y++)
{
    Pointer = Scan0 + Y * Stride;
    SkinP = SkinScan0 + Y * SkinStride;
    for (X = 0; X < Width; X++)
    {
        *SkinP = 0;                                 // 非皮肤区域为黑色        Blue = *Pointer; Green = *(Pointer + 1); Red = *(Pointer + 2);
        if (Red - Green >= 45)                                              //  符合条件R4
        {
            if (Green > Blue)                                               //   符合条件R3
            {
                Sum = Red + Green + Blue;
                T1 = 156 * Red - 52 * Sum;                                 
                T2 = 156 * Green - 52 * Sum;
                if (T1 * T1 + T2 * T2 >= (Sum * Sum) >> 4)                    // 符合条件R2,在32位系统要尽量避免用long类型数据,
                   {
                    T1 = 10000 * Green * Sum;
                    Lower = - 7760 * Red * Red + 5601 * Red * Sum + 1766 * Sum * Sum;         // 把这里的公用的乘法提取出来基本没啥优化的效果
                        if (T1 > Lower)                                         // 符合条件R11
                    {
                        Upper = - 13767 * Red * Red + 10743 * Red * Sum + 1452 * Sum * Sum ;
                        if (T1 < Upper)                                     //  符合条件R12
                        {
                            *SkinP = 255;
                     }
                    }
                }
            }
        }
        Pointer += 3;
        SkinP++;
    }

  本人特喜欢优化,特别是代码层面的优化,比如上述的 Lower = 5601 * Red * Sum + 1766 * Sum * Sum 这句,偶尔我写成Lower =- Red * Red * 7760+ 5601 * Red * Sum + 1766 * Sum * Sum 这样,然后没事的时候我反汇编了两种写法有什么不同,结果如下:

 Lower =-7760 * Red * Red+ 5601 * Red * Sum + 1766 * Sum * Sum ;         // 把这里的公用的乘法提取出来基本没啥优化的效果
00000118  imul        ebx,ecx,0FFFFE1B0h 
0000011e  imul        ebx,ecx 
00000121  imul        eax,ecx,15E1h 
00000127  imul        eax,esi 
0000012a  add         ebx,eax 
0000012c  imul        eax,esi,6E6h 
00000132  imul        eax,esi 
00000135  add         ebx,eax 
 Lower = -Red * Red * 7760 * +5601 * Red * Sum + 1766 * Sum * Sum;         // 把这里的公用的乘法提取出来基本没啥优化的效果
00000118  mov         ebx,ecx 
0000011a  neg         ebx 
0000011c  imul        ebx,ecx 
0000011f  imul        ebx,ebx,1E50h 
00000125  imul        ebx,ebx,15E1h 
0000012b  imul        ebx,ecx 
0000012e  imul        ebx,esi 
00000131  imul        eax,esi,6E6h 
00000137  imul        eax,esi 
0000013a  add         ebx,eax 

可见多了两条汇编语句的。可能这个优化举在这里不合适,因为有个系数-7760,一般谁都不会像上面写,但是如果系数是-1,那就比一定了,比如如果是-Red+Blue 和Blue-Red那就有着截然不同的意义了。

      这个算法的皮肤检测效果还是很不错的,那原文中的图像来举例如下:

             原图                                                           梦版图                                                      合成图

然后贴一张别人博客上的照片的例子(一群帅哥和美女):

 检测结果:

  由于是有选择性的执行,因此程序执行的速度其实和图像的内容有关,同样一副大小的图像,如果皮肤部分站的比例越大,执行的时间可能就会越长,就上述这幅800*600的图像来说,在我I3的笔记本上仅用了4ms就得到了结果,因此速度是相当的快的。

***************************作者: laviewpbt   时间: 2013.8.17   联系QQ:  33184777  转载请保留本行信息*************************

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SnailTyan

Caffe源码解析(一) —— caffe.proto

caffe.proto是caffe数据结构定义的主要文件,本文主要是在caffe.proto代码的基础上加上了部分中文注释,其中的内容与caffe的protot...

4395
来自专栏HT

基于HTML5的WebGL实现的2D3D迷宫小游戏

为了实现一个基于HTML5的场景小游戏,我采用了HT for Web来实现,短短200行代码,我就能实现用“第一人称”来操作前进后退上下左右,并且实现了碰撞检测...

2047
来自专栏机器之心

学界 | Jeff Dean新提出机器学习索引替代B-Trees:可提速3倍

3445
来自专栏Coco的专栏

盒子端 CSS 动画性能提升研究

对于 Web 动画的性能问题,仅仅停留在感觉已经优化的OK之上,是不够的,想要在盒子端跑出高性能接近 60 FPS 的流畅动画,就必须要刨根问底,深挖每一处可以...

44613
来自专栏HT

HT for Web基础动画介绍

在上一篇《基于HT for Web矢量实现3D叶轮旋转》一文中,我略微提了下HT for Web基础动画的相关用法,但是讲得不深入,今天就来和大家分享下HT f...

1889
来自专栏SnailTyan

Squeeze-and-Excitation Networks论文翻译——中英文对照

Squeeze-and-Excitation Networks Abstract Convolutional neural networks are built...

2250
来自专栏新智元

孙剑团队提出移动端神经网络ShuffleNet,优于谷歌MobileNet

【新智元导读】在视觉人工智能系统中,卷积神经网络(CNN)起着至关重要的作用。旷视(Face++)孙剑等人的研究团队最近发表了《ShuffleNet:一种极高效...

3176
来自专栏QQ大数据团队的专栏

神盾推荐——离线算法平台

6285
来自专栏每日一篇技术文章

学习音视频解码你应该知道的东西

查看详细的视频编码介绍请访问视频编码 我们重点研究一下 H.26X 系列 特点:侧重网络传输 包括:H.261、H.262、H.263、H.263+、H....

1092
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

SSE图像算法优化系列四:图像转置的SSE优化(支持8位、24位、32位),提速4-6倍

一、前言       转置操作在很多算法上都有着广泛的应用,在数学上矩阵转置更有着特殊的意义。而在图像处理上,如果说图像数据本身的转置,除了显示外,本身并无特殊...

2749

扫码关注云+社区