faster rcnn demo.py:在一个窗口显示所有类别标注

faster rcnn 的demo.py运行时,对于同一个图像,每个类别显示一个窗口,看起来不太方便,顺便小改一下,让一幅图像中检测到的所有类别物体都在一个窗口下标注,就方便多了。 代码改动也不复杂,就是把vis_detections函数中for循环前后三行代码移动到demo函数的for循环前后。 完整代码如下(顺便把标注框的线宽改成了1,以前是3.5太粗了,不好看): py-faster-rcnn/tools/demo.py (注意代码中本人添加的中文注释)

#!/usr/bin/env python
#coding=utf8
# 因为代码中我加了中文注释,所以 上面这行用于指定编码 ,否则python代码执行会报错 
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.

See README.md for installation instructions before running.
"""

import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse

CLASSES = ('__background__',
           'aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
           'cow', 'diningtable', 'dog', 'horse',
           'motorbike', 'person', 'pottedplant',
           'sheep', 'sofa', 'train', 'tvmonitor')

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'ZF_faster_rcnn_final.caffemodel')}

#增加ax参数
def vis_detections(im, class_name, dets, ax, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return
# 删除这三行
#     im = im[:, :, (2, 1, 0)]
#     fig, ax = plt.subplots(figsize=(12, 12))
#     ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=1) # 矩形线宽从3.5改为1
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
# 删除这三行
#     plt.axis('off')
#     plt.tight_layout()
#     plt.draw()

def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    # 将vis_detections 函数中for 循环之前的3行代码移动到这里
    im = im[:, :, (2, 1, 0)]
    fig,ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        #将ax做为参数传入vis_detections
        vis_detections(im, cls, dets, ax,thresh=CONF_THRESH)
    # 将vis_detections 函数中for 循环之后的3行代码移动到这里
    plt.axis('off')
    plt.tight_layout()
    plt.draw()

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        choices=NETS.keys(), default='vgg16')

    args = parser.parse_args()

    return args

if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    print '\n\nLoaded network {:s}'.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)

    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
                '001763.jpg', '004545.jpg']
    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(net, im_name)

    plt.show()

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

问答 | 前向推理的时候 Yolov3 怎么指定 GPU?

683
来自专栏从流域到海域

Ubuntu16.04使用Anaconda5搭建TensorFlow使用环境 图文详细教程

本文转载于:http://blog.csdn.net/solo95/article/details/78960389,即专栏作者本人的博客,保留所有版权,禁止转...

2775
来自专栏kangvcar

[face_recognition中文文档] 第1节 人脸识别

1932
来自专栏企鹅号快讯

机器学习资料合计(二)附链接

推荐阅读时间:5min~8min 主要内容:经典资源推荐:如果不能使用的,请在知乎评论区告知(ps:最近在刷李飞飞CS231n2017,有兴趣的小伙伴多多交流哇...

1848
来自专栏伪君子的梦呓

用 Python 分析微信好友性别比例

0 前言 上一次是用 python 实现聊天机器人,其中提及到 itchat 这个包,使用了一下,发现挺好玩的,找了相关的代码看了一下,发现可以用来分析微信好...

3567
来自专栏云时之间

机器学习资料合计(二)

2017年最后一天,继续把手头的资料分享给大家,希望大家2018都有一个美好的前程! 如果不能使用的,请在评论区告知(ps:最近在刷李飞飞CS231n2017,...

3386
来自专栏张善友的专栏

Silverlight 快速易学易用之中文字型解决方案

 这是一篇台湾msdn的文章:       Silverlight 1.0 正式版内建只支持 9 种英文字型,这对于欧美国家的 Silverlight 程序开发...

1869
来自专栏10km的专栏

cuDNN兼容性问题造成的caffe/mnist,py-faster-rcnn/demo运行结果错误

问题描述 我有两台电脑,一台笔记本GTX965M显卡,台式机是GTX1060显卡 两台电脑上的软件环境都一样:ubuntu16+cuda8.0+cuDNN4...

18310
来自专栏机器之心

圣诞快乐——Keras+树莓派:用深度学习识别圣诞老人

3588
来自专栏MixLab科技+设计实验室

以图搜图技术栈

先看个案例: ? 这是什么动画 https://whatanime.ga/ 一个用于通过动画截图找出处的搜索引擎。可以找到跟动画截图相似的动画片截图,并找到动画...

4078

扫码关注云+社区