<<一种基于δ函数的图象边缘检测算法>>一文算法的实现。

  原始论文下载: 一种基于δ函数的图象边缘检测算法

     这篇论文读起来感觉不像现在的很多论文,废话一大堆,而是直入主题,反倒使人觉得文章的前后跳跃有点大,不过算法的原理已经讲的清晰了。

    一、原理

     文中提出的边缘检测算法原理也不是特别复杂,使用了一个低通滤波函数以及一个高通滤波函数,其形式分别为:

                                            (1)

                  (2)

       当图像中的噪音比较少时,可以直接使用高通滤波器对图像进行滤波,得到图像的细节信息(即边缘处),论文中称之为D算法,计算公式如下:

    式中顶部的横线应该是表示开平方的意思。

       而当图像含有噪音时,则采用高通和低通滤波器结合方式,使用低通滤波器平滑图像中的噪音,高通滤波器检测边缘,这个原理则类似于高斯拉普拉斯边缘检测过程,论文中称之为C算法,计算公式如下:

       式中w表示的是窗口大小,取值越大,边缘的宽度越大,建议理想取值为2。

   上面两个式子都已经是离散化的表达方式了,因此实际上也是一种对图像的模板操作,只是模板中的因子需要随着参数的不同而改变。

       注意:D算法仅仅是一维的模板操作,而C算法是二维的。

二、代码

       下面贴出D算法的核心代码:

void EdgeDetail(byte* Src, byte* Dest, int Width, int Height, int Stride, int Radius = 2, double S = 1, double T = 3)
{
    int X, Y, I, J, XX, YY;
    byte* SrcP, DestP;
    int SumOne, SumTwo, Power;
    byte* SqrValue = (byte*)GlobalAlloc(GPTR, (256 * 256) * sizeof(byte));
    int* SpeedHigh = (int*)GlobalAlloc(GPTR, (Radius * 2 + 1) * sizeof(int));

    SpeedHigh += Radius;

    for (Y = 0; Y < 256 * 256; Y++) SqrValue[Y] = (byte)Math.Sqrt(Y);

    for (Y = -Radius; Y <= Radius; Y++)
    {
        if (Y == 0)
            SpeedHigh[Y] = 0;
        else
            SpeedHigh[Y] = (int)((((Math.Cos(S * Y) / Y) - (Math.Sin(S * Y) / S) * (1.0 / (Y * Y) + 1.0 / (T * T))) * Math.Exp(-((double)Y * Y) / (2 * T * T))) * 1024);
    }
    for (Y = 0; Y < Height; Y++)
    {
        DestP = Dest + Y * Stride;
        for (X = 0; X < Width; X++)
        {
            SumOne = 0; SumTwo = 0;
            for (J = -Radius; J <= Radius; J++)
            {
                XX = X + J;
                if (XX < 0) XX = 0; else if (XX >= Width) XX = Width - 1;
                SrcP = Src + Stride * Y + XX;
                SumOne += (SpeedHigh[J] * SrcP[0]) >> 10;
                YY = Y + J;
                if (YY < 0) YY = 0; else if (YY >= Height) YY = Height - 1;
                SrcP = Src + Stride * YY + X;
                SumTwo += (SpeedHigh[J] * SrcP[0]) >> 10;
            }
            Power = SumOne * SumOne + SumTwo * SumTwo;
            if (Power > 65025) Power = 65025;
            DestP[0] = SqrValue[Power];
            DestP++;
        }
    }
    SpeedHigh -= Radius;
    GlobalFree((IntPtr)SqrValue);
    GlobalFree((IntPtr)SpeedHigh);
}

如上所示,我采用了整数运算代替了浮点运算,主要目的是为了提高速度,当然这样做可能会牺牲一部分精度,由于从算法的必要性上讲,Radius不需要取得很大,因此,对于内部的二重循环来说,压力不是特大,因此没有做特殊的优化。而在超出边界处,直接采用的是使用边界元素值。

     上述代码的内部循环里有一些计算式可以提取到外部来的, 只是为了算法的清晰性,未做优化,速度发烧友可以自行提取。

     该算法各像素之间的计算式独立的,因此可以很简单的就实现并行计算。

  而C算法的代码就稍微复杂一点:

void EdgeCoarse(byte* Src, byte* Dest, int Width, int Height, int Stride, int Radius = 2, double S0 = 0.3, double T0 = 3, double S1 = 0.2, double T1 = 2)
{
    int X, Y, I, J, XX, YY;
    byte* SrcP, DestP;
    int SumOne, SumTwo, Power;
    int* SqrValue = (int*)GlobalAlloc(GPTR, (256 * 256) * sizeof(int));
    int* SpeedHigh = (int*)GlobalAlloc(GPTR, (Radius * 2 + 1) * sizeof(int));
    int* SpeedLow = (int*)GlobalAlloc(GPTR, (Radius * 2 + 1) * sizeof(int));

    SpeedHigh += Radius;
    SpeedLow += Radius;

    for (Y = 0; Y < 256 * 256; Y++) SqrValue[Y] = (int)Math.Sqrt(Y);

    for (Y = -Radius; Y <= Radius; Y++)
    {
        if (Y == 0)
        {
            SpeedHigh[Y] = 0;
            SpeedLow[Y] = 1024;
        }
        else
        {
            SpeedHigh[Y] = (int)((((Math.Cos(S1 * Y) / Y) - (Math.Sin(S1 * Y) / S1) * (1.0 / (Y * Y) + 1.0 / (T1 * T1))) * Math.Exp(-((double)Y * Y) / (2 * T1 * T1))) * 1024);
            SpeedLow[Y] = (int)(((Math.Sin(S0 * Y) / (S0 * Y)) * Math.Exp(-((double)Y * Y) / (2 * T0 * T0))) * 1024);
        }
    }

    for (Y = 0; Y < Height; Y++)
    {
        DestP = Dest + Y * Stride;
        for (X = 0; X < Width; X++)
        {
            SumOne = 0; SumTwo = 0;
            for (J = -Radius; J <= Radius; J++)
            {
                YY = Y + J;
                if (YY < 0) YY = 0; else if (YY >= Height) YY = Height - 1;
                for (I = -Radius; I <= Radius; I++)
                {
                    XX = X + I;
                    if (XX < 0) XX = 0; else if (XX >= Width) XX = Width - 1;
                    SrcP = Src + Stride * YY + XX;
                    SumOne += (SpeedHigh[I] * SpeedLow[J] * SrcP[0]) >>20;
                    SumTwo += (SpeedLow[I] * SpeedHigh[J] * SrcP[0]) >>20;
                }
            }
            Power = SumOne * SumOne + SumTwo * SumTwo;
            if (Power > 65025) Power = 65025;
            DestP[0] = (byte)SqrValue[Power];
            DestP++;
        }
    }
    SpeedHigh -= Radius;
    SpeedLow -= Radius;
    GlobalFree((IntPtr)SqrValue);
    GlobalFree((IntPtr)SpeedHigh);
    GlobalFree((IntPtr)SpeedLow);

}

   我个人不怎么喜欢用C#的数组,这也是从性能角度考虑的,我喜欢直接操作指针。这个可以根据每个人自己的习惯修改吧。 

    相信能看懂原理的朋友对于代码部分的理解也应该很容易,这里不做多解释。

三、效果

c算法的结果

                  原图

                     Radius=2,S=3.14,T=1

                  Radius=2,S=1.57,T=1

  D算法:

原图

                 Radius=2,S0 = 0.3, T0 = 3, S1 = 0.2, T1 = 2

               Radius=2,S0 = 3, T0 = 3, S1 = 2, T1 = 2  

    可见,这个算法要取得比较好的效果,是需要调整S/T这些参数,关于这些参数的取值意向,可以参考原文中的一些描述。

    这个工程比较简单,附上C#的程序:http://files.cnblogs.com/Imageshop/EdgeDetectUseDeltaFunction.rar

*********************************作者: laviewpbt   时间: 2013.10.26    联系QQ:  33184777  转载请保留本行信息************************

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SnailTyan

非极大值抑制(Non-Maximum Suppression)

1. 什么是非极大值抑制 非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制极大值。NMS算法在...

3570
来自专栏Keegan小钢

Android样式的开发:shape篇

一个应用,应该保持一套统一的样式,包括Button、EditText、ProgressBar、Toast、Checkbox等各种控件的样式,还包括控件间隔、文字...

492
来自专栏CVPy

OpenCV玩九宫格数独(一):九宫格图片中提取数字

在一年之前,我曾用 C++ 尝试过 opencv 解数独,但由于当时水平有限,未能完成。最近我打算改用 Python 来完成。本文先说第一步,图片中数字的提取。

2.2K2
来自专栏图形学与OpenGL

模拟试题B

1.灰度等级为256级,分辨率为2048*1024的显示器,至少需要的帧缓存容量为( )

1151
来自专栏章鱼的慢慢技术路

MFC绘图小实验(2)

1363
来自专栏YoungGy

LinearAlgebra_2

列空间和零空间 回顾 主题 例子 AXb 求解AX0 回顾 主题 AX0求解的总体思路 例子 形式化的求解 AXb 什么时候有解 有解的话求解 特解 求出通解 ...

2129
来自专栏大数据挖掘DT机器学习

反向传播神经网络极简入门

我一直在找一份简明的神经网络入门,然而在中文圈里并没有找到。直到我看到了这份162行的Python实现,以及对应的油管视频之后,我才觉得这就是我需要的极简入门资...

35815
来自专栏大数据挖掘DT机器学习

KMeans聚类算法思想与可视化

1.聚类分析 1.0 概念 聚类分析简称聚类(clustering),是一个把数据集划分成子集的过程,每一个子集是一个簇(cluster),使得簇中的样本彼此...

6946
来自专栏书山有路勤为径

特征类型和图像分割

我们最想检测的就是角点,因为角点是可重复性最高的特征,也就是说因为角点是可重复性最高的特征,给出关于同一景象的两张或以上图像 我们就能很轻易地识别出这类特征。 ...

833
来自专栏谈补锅

CSS笔记

@import url(xx.css): 在一个css中,添加对其他css文件的引用

834

扫码关注云+社区