目标检测--RON: Reverse Connection with Objectness Prior Networks for Object Detection

RON: Reverse Connection with Objectness Prior Networks for Object Detection CVPR2017 https://github.com/taokong/RON

本文可以看作是对 SSD 的改进, SSD 对不同尺度特征图进行独立的检测,这里我们 reverse connection block 将相邻的特征图联系起来。同时使用 objectness prior 来有效降低目标的搜索空间。

3 Network Architecture 我们使用 VGG16 作为基础模型, VGG16有13个卷积层,3个全连接层,这里我们将 第 14,15 全连接层变为卷积层,使用一个2×2卷积核 步长为2 来降采样 FC7 的尺寸。用于检测的特征图尺寸分布为输入图像尺寸的 1/8 (conv 4 3), 1/16 (conv 5 3), 1/32 (conv 6) and 1/64 (conv 7)

RON object detection overview

3.1. Reverse Connection 怎么把相邻的特征图联系起来了?我们提出了一个 reverse connection block 来解决这个问题。 相邻的特征图尺寸差异通过 deconv 反卷积来消除

3.2. Reference Boxes 这里我们对每个尺度的特征图使用 2 scales and 5 aspect ratios 的 default boxes, aspect ratios { 1/3,1/2, 1, 2,3}

3.3. Objectness Prior 针对 正负样本比例严重失调, the ratio between object and non-object samples is seriously imbalanced,这里我们使用 Objectness Prior 来过滤大部分负样本

3.4. Detection and Bounding Box Regression

A=10个 Reference Boxes

inception block 我们使用了一个比较简单的结构

3.5. Combining Objectness Prior with Detection

经过 objectness prior 过滤,只有很少一部分样本进行 back-propagation

4 Training and Testing 4.1. Loss Function 损失函数包括三个子损失函数: objectness prior,矩形框坐标,物体类别

其中α =β =1/3

4.2. Joint Training and Testing Data augmentation :flipped,Randomly sampling a patch

Detection results on PASCAL VOC 2007 test set

Results on PASCAL VOC 2012 test set

MS COCO test-dev2015 detection results

6.1. Do Multiple Layers Help?

low resolution 384×384 input size,With 1.5G GPU memory at test phase, the speed of the network is 15 FPS, 3× faster than the Faster R-CNN counterpart

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏瓜大三哥

图像分割(三) 之基于FPGA的局部自适应分割

图像分割(三) 之基于FPGA的局部自适应分割 在前面讲的自适应分割的原理如下: ? 由公式可以看出,窗口的分割值是对图像进行开窗,并计算窗口内的像素均值和标准...

1967
来自专栏MixLab科技+设计实验室

深度学习生成舞蹈影片02之MDN代码练习

本文接上一期,补充一些MDN的代码练习。本教程开发环境是python+jupyter,引用了一个用keras写的mdn包,目标是拟合反正弦函数曲线:

883
来自专栏数据科学与人工智能

【算法】相似度计算方法原理及实现

小编邀请您,先思考: 1 相似度如何计算? 2 相似度有什么应用? 温馨提示:加入圈子或者商务合作,请加微信:luqin360 在数据分析和数据挖掘以及搜索引擎...

3506
来自专栏磐创AI技术团队的专栏

粒子群优化算法(PSO)之基于离散化的特征选择(FS)(三)

1112
来自专栏IT派

PyTorch之迁移学习实战

迁移学习是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。通常,源领域数据量充足,而目标领域数据量较小,迁移...

671
来自专栏机器学习和数学

[机智的机器在学习] 卷积神经网络入门教程(2)

今天继续回归卷积神经网络的入门教程,主要是介绍全连接网络的训练过程,通俗的讲就是我们入门教程(1)里面讲的是全连接网络长什么样,神经元之间的关系是什么样的,里面...

3294
来自专栏专知

春节充电系列:李宏毅2017机器学习课程学习笔记11之Why Deep Learning?

【导读】我们在上一节的内容中已经为大家介绍了台大李宏毅老师的机器学习课程的卷积神经网络,这一节将主要针对讨论深度学习要深的原因。本文内容涉及机器学习中深度学习的...

33713
来自专栏计算机视觉战队

深度学习——感受野

最近在组会讲解框架时,在感受野这个小知识点,大家开始产生歧义,今天我就简单的给大家讲解下这个小知识点,也给初学者带来一个对Receptive Field崭新的认...

4047
来自专栏计算机视觉战队

简单理解感受野

最近在组会讲解框架时,在感受野这个小知识点,大家开始产生歧义,今天我就简单的给大家讲解下这个小知识点,也给初学者带来一个对Receptive Field崭新的认...

2624
来自专栏AI研习社

问答 | 深度置信网与堆栈自编码器有什么区别?

862

扫码关注云+社区