人群计数--Mixture of Counting CNNs

Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting https://arxiv.org/abs/1703.09393

本文是人群计数的,不是人群密度估计。所以网络结构比较比较简单。这里主要的思路是针对不同场景的 scale and congestion 造成图像块的 Appearance 差别很大,这里我们使用多个小 CNN 来估计总人群。另外适应一个大点的 CNN 对 图像块进行分类,这种分类主要依据人群密度大小。类别的概率作为每个小 CNN 的权重。

Appearance 的差异性

我们提出的网络结构 Mixture of Counting CNNs

3.1. Counting by MoC-CNN 网络最终的人数估计等于所有所有小CNN的人数估计权重之和。 weighed sum of output of each expert CNN

Architecture of gating and expert CNNs

这里我们认为分类的问题要更负责一些,所以对 gating CNN 我们使用了一个更大点的 CNN

我们对比测试了另外两种网络结构:

UCF CC 50 dataset

Mall dataset

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能算法

趣味理解朴素贝叶斯

趣味理解朴素贝叶斯 NavieBays 生活中很多场合需要用到分类,比如新闻分类、病人分类等等实际用用场景。为了让大家可以形象的理解,本文从实际的应用入手介绍...

3579
来自专栏MixLab科技+设计实验室

写给设计师的人工智能指南:如何找出相似的文章

聊聊文本挖掘中的 “找出相似的文章”, 为“推荐系统”做准备。 以下为正文。 ---- 先了解下文本挖掘的一般过程。 如何让计算机读懂一段文字? 本质上要解决的...

35410
来自专栏移动开发面面观

交叉熵——我们如何评估差异

机器学习的本质是信息论。在信息论中,首先我们引入了信息熵的概念。认为一切信息都是一个概率分布。所谓信息熵,就是这段信息的不确定性,即是信息量。如果一段信息,我无...

1315
来自专栏机器学习算法与Python学习

机器学习正在成为程序员的必备能力

1114
来自专栏机器学习算法与Python学习

趣味理解朴素贝叶斯

趣味理解朴素贝叶斯 NavieBayes 生活中很多场合需要用到分类,比如新闻分类、病人分类等等实际用用场景。为了让大家可以形象的理解,本文从实际的应用入手介...

3609
来自专栏机器人网

谁是世界上最美的人?看神经网络为每人按颜值魅力打分

「魔镜魔镜告诉我,谁是世界上最美的女人?」这句伴随童年的话也有现实版哦~神经网络可以预测人脸颜值,这方面也出现了不少研究。今年年初华南理工大学的研究者发布论文,...

1444
来自专栏数据科学与人工智能

【算法】相似度计算方法原理及实现

小编邀请您,先思考: 1 相似度如何计算? 2 相似度有什么应用? 温馨提示:加入圈子或者商务合作,请加微信:luqin360 在数据分析和数据挖掘以及搜索引擎...

3506
来自专栏数据小魔方

excel数据分析工具库系列三|趋势平滑

今天要跟大家分享的内容是数据分析工具库系列三——趋势平滑! 在时间序列数据中,往往存在很多周期性趋势以及随机干扰因素,给我们的分析工作工作带来很多不便。 当然有...

2796
来自专栏Python中文社区

Kaggle搭积木式刷分大法: LB 0.11666(排名前15%)

專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目...

18710
来自专栏量子位

无需在数据集上学习和预训练,这种图像修复新方法效果惊人 | 论文

林鳞 编译自 Github 量子位 出品 | 公众号 QbitAI Reddit上又炸了,原因是一个无需在数据集上学习和预训练就可以超分辨率、修补和去噪的方法:...

2719

扫码关注云+社区