人群密度估计--CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd

CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting International Conference on Advanced Video and Signal Based Surveillance (AVSS) 2017 Torch: https://github.com/svishwa/crowdcount-cascaded-mtl

本文主要解决人群密度估计问题中的 人群场景变化大的问题,人在场景中的尺度和外观变化范围大 the issue of large variations in scale and appearance of the objects that occurs due to severe perspective distortion of the scene

本文提出的解决思路是使用 CNN网络,并在网络中嵌入 high-level prior 先验知识 The aim of this work is to learn models that cater to a wide variety of density levels present in the data set by incorporating a high-level prior into the network.

所谓的 high-level prior 就是根据图像中的大致总人数将图像分类不同的若干类,本文将图像根据总人数分为10类 The high-level prior learns to classify the count into various groups whose class labels are based on the number of people present in the image.

这个 high-level prior 可以不受 scale variations 的影响 让我们能够对图像中总人数有一个大致的估计 By exploiting count labels, the high-level prior is able to estimate coarse count of people in the entire image irrespective of scale variations thereby enabling the network to learn more discriminative global features.

3 Proposed method

我们的CNN网络前两个卷积用于提取公用特征,接着网络一分为二,一个分支是用于 High-level prior stage,这个分支主要干什么了?Classifying the crowd into several groups, quantize the crowd count into ten groups and learn a crowd count group classifier which also performs the task of incorporating high-level prior into the network

第二个分支 接着使用四个卷积层提取特征,然后再综合 上个分支的特征,使用 fractionally strided convolutions 做特征图上采样,得到大尺度的密度估计图

目标损失函数: 1) cross-entropy loss function for the high-level prior stage

2) loss function for the density estimation stage

Ground truth density map 真值密度图的生成: calculated by summing a 2D Gaussian kernel centered at every person’s location x

4 Experimental results

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

怎样做中文文本的情感分析?

2016课程地址 项目描述地址 ---- 什么是情感分析? 就是要识别出用户对一件事一个物或一个人的看法、态度,比如一个电影的评论,一个商品的评价,一次...

3738
来自专栏数据派THU

一文读懂FM算法优势,并用python实现!(附代码)

作者:ANKIT CHOUDHARY 翻译:张媛 术语校对:冯羽 文字校对:谭佳瑶 本文共3933字,建议阅读9分钟。 本文带大家了解因子分解机算法并解析其优势...

1.3K8
来自专栏大数据文摘

步长?填充?池化?教你从读懂词语开始了解计算机视觉识别最火模型 | CNN入门手册(中)

1644
来自专栏悦思悦读

利用逻辑回归模型判断用户提问意图

在之前开发聊天机器人的文章里,我们讲解了如何使用在线工具LUIS (https://luis.ai) 开发Chat bot的自然语言理解模型。 在构造问题解决型...

44314
来自专栏AI研习社

用 TensorFlow 让你的机器人唱首原创给你听

AI 研习社按:这篇文章会用一个简单的模型在 TensorFlow 上来实现一个音频生成器,GitHub 代码链接详见文末“阅读原文”。原文作者杨熹,载于作者的...

3349
来自专栏大数据挖掘DT机器学习

数据挖掘18大算法实现以及其他相关经典DM算法

算法使用方法在每个算法中给出了3大类型,主算法程序,调用程序,输入数据,调用方法如下: 将需要数据的测试数据转化成与给定的输入格式相同,然后以Client类...

3699
来自专栏目标检测和深度学习

深度学习之基础网络演进、分类与定位的权衡|牛喀技研

深度学习,目标检测,图像,智能驾驶 编译:牛喀网-钱伟 前言 本篇关注基础网络架构的演进和处理分类、定位这一矛盾问题上的进展。 基础网络结构的演进 基础网络(...

6107
来自专栏目标检测和深度学习

CVPR2018 | CMU&谷歌Spotlight论文:超越卷积的视觉推理框架

选自arXiv 作者:陈鑫磊等 机器之心编译 参与:张倩、李泽南 人类在看到图像时可以进行合理的推理与预测,而目前的神经网络系统却还难以做到。近日,来自卡耐基梅...

2866
来自专栏目标检测和深度学习

目标检测入门(四):特征复用、实时性

文章结构 本文的第一部分关注检测模型的头部部分。对与每张图片,深度网络其实是通过级联的映射获得了在某一流形上的一个表征,这个表征相比原图片更有计算机视角下的语义...

3667
来自专栏杨熹的专栏

用 TensorFlow 让你的机器人唱首原创给你听

Siraj 的视频 源码 今天想来看看 AI 是怎样作曲的。 本文会用 TensorFlow 来写一个音乐生成器。 当你对一个机器人说:我想要一种能够表达出希...

3396

扫码关注云+社区