快速小目标检测--Feature-Fused SSD: Fast Detection for Small Objects

Feature-Fused SSD: Fast Detection for Small Objects

本文针对小目标检测问题,对 SSD 模型进行了一个小的改进,将 contextual information 引入到 SSD 中 帮助SSD检测小目标。

contextual information 对于小目标的检测 重要性是不言而喻的。小目标在图像中 limited resolution and information,只能借助其周边信息了。

Feature-fused SSD architecture

这里主要还是讲不通尺度的特征图信息融合起来。

Which layers to combine? 但是具体融合哪个卷积层的特征图了

Because of SSD predicting small objects with its shallower layers,所以我们不用对应大目标的 deeper layers For choosing the proper feature fusion layers, effective receptive fields in different layers are explored with deconvolution method 对应上图中的小船,SSD中的 conv4_3 对应的 effective receptive field 是最合适的。 其他层的特征都不是很好

shallower layers 具有 contextual information ,但是它们没有 sematic information,deeper layers 具有 sematic information,所以我们需要将这两类信息融合起来。这里我们尝试了两种融合策略。 concatenation module and element-sum module

3.2 Concatenation Module

3.3 Element-Sum Module

4 Experimental Resultis Detection results of different fusion layers

Detection results of different number of kernels

Results on PASCAL VOC2007 test set (with IOU=0.5)

The running time illustration of different models

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏marsggbo

使用numpy解决图像维度变换问题

在机器学习中经常会碰到各种图像数据集,有的是按照num*height*width*channel来存储的,而有的则是num*channel*height*wid...

2141
来自专栏林欣哲

10分钟教你深度学习的调参

深度学习的训练方法可参见我之前的文章深度学习的训练,以下则是调参的手法及典型值。 两类需要调参的参数(parameters) 优化类的参数:学习率(learni...

5358
来自专栏Duncan's Blog

超参的搜索方法整理

网格搜索通过查找搜索范围内的所有的点,来确定最优值。它返回目标函数的最大值或损失函数的最小值。给出较大的搜索范围,以及较小的步长,网格搜索是一定可以找到全局最大...

2002
来自专栏简书专栏

房产估值模型训练及预测结果2

用于进行回归预测的源数据文件下载链接: https://pan.baidu.com/s/16-JGI-JnksC9I7I_ghvrug 密码: ey46

1222
来自专栏ATYUN订阅号

【学术】从零开始,教你如何编写一个神经网络分类器

高水平的深度学习库,如TensorFlow,Keras和Pytorch,通过隐藏神经网络的许多乏味的内部工作细节,使深度学习从业者的生活变得更容易。尽管这是深度...

2796
来自专栏郭耀华‘s Blog

卷积神经网络CNN的意义

1573
来自专栏AI研习社

利用 SKLearn 重建线性模型

线性模型通常是训练模型的一个比较好的起点。 但是由于许多数据集的自变量和因变量之间并不是线性关系,所以经常需要创建多项式模型,导致这些模型很容易过拟合。 正则化...

1033
来自专栏郭耀华‘s Blog

卷积神经网络CNN的意义

一、选用卷积的原因 局部感知 简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 —— 这很符合日常...

2958
来自专栏机器学习算法与Python学习

TensorFlow实战:CNN构建MNIST识别(Python完整源码)

在文章(TensorFlow实战:SoftMax手写体MNIST识别(Python完整源码))中,我们MNIST手写体识别数据集,使用TensorFlow构建了...

1.3K9
来自专栏https://www.cnblogs.com/L

【神经网络篇】--RNN递归神经网络初始与详解

由图可知,比如第二个节点的输入不仅依赖于本身的输入U1,而且依赖上一个节点的输入W0,U0,同样第三个节点依赖于前两个节点的输入,

1272

扫码关注云+社区