前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深入理解计算机系统(2.6)------整数的运算

深入理解计算机系统(2.6)------整数的运算

作者头像
IT可乐
发布2018-01-04 14:41:46
1.4K0
发布2018-01-04 14:41:46
举报
文章被收录于专栏:IT可乐IT可乐IT可乐

  前面两篇博客我们详细讲解了计算机中整数的表示,包括有符号和无符号(补码编码)的详细介绍。那么这篇博客我们将对它们的运算有个详细的了解。

  在讲解之前首先看下面的一个程序,看看输出结果是啥?

#include <stdio.h>

int main()
{
	int i = 2147483647;
    printf("%d\n",i+1);
    printf("%d\n",i+i);
	return 0;
}

  结果是:

  我们预期的:

i+1 = 2147483647 + 1 = 2147483648

  i+i = 2147483647 + 2147483647  = 4 294 967 294

  为什么程序中的结果和我们数学中的常识会有这么大的区别?两个正数相加得到负数。这就需要我们理解计算机中整数的运算原理。

1、计算机整数运算的局限

  我们知道计算机是用二进制序列来表示数的。而二进制序列的长度是和计算机本身的字长有关。不同的数据类型定义的二进制序列长度不一样,即不同的数据类型表示数的大小范围是不一样的。但是不管是什么数据类型,它定义的二进制序列长度是有限的,即它表示的数的大小范围是有限的

  所以两个数做运算,如果结果超出了定义数据类型所表示数的大小范围,那么结果将会出现失真。而且这个失真的结果也不是随机的,而是有迹可循的,那么到底是怎么产生失真的,请接着往下面看。

  PS:下面给出 64 位机器上C语言的整型数据类型的取值范围。本篇博客中程序运行环境都是在64位系统中进行。

2、无符号数加法运算

  前面我们讲过,对于一个 w 位的无符号二进制整数[xw-1 , xw-2 , … , x2 , x1 , x0],其值大小满足 0 <= x <= 2w-1.

如果两个无符号数相加,那么其结果应该是 0 <= x+y <=2w+1-2。很显然表示这个范围的数必须要 w+1 位二进制。

  当我们对无符号数做加法运算的时候,如果结果超过了 2w-1,那么这个结果就会失真。

#include <stdio.h>

int main()
{
	unsigned short int i = 65535;
	unsigned short int j = i+1;
    printf("%u\n",j);
	return 0;
}

  结果为:

  对于上面的程序,我们是在64位系统中进行运算。由上面给出的图片我们可以知道 unsigned short int 在计算机中占用 2 个字节。表示的数据范围是 0——216-1,即0——65535

  我们在程序中定义 i = 65535,那么 i+1=65536,这个结果是超出了 unsigned short 表示的数据范围。所以结果失真了,但是结果为什么是 0 呢?

  上一篇博客我们讲过C语言中二进制数的截断:

将一个 w 位的数 [xw-1 , xw-2 , … , x2 , x1 , x0] 截断为一个 k 位数字时,我们会丢弃高 w-k 位。得到 [xk-1 , xk-2 , … , x2 , x1 , x0]

  对于上面的 i = 65535,二进制表示为:[1111 1111 1111 1111],加1 结果为 65536,用二进制表示为 [1 0000 0000 0000 0000],为了将结果保持在 4个字节,即32位二进制序列,我们去掉最高位的 1,那么结果就变成了 [0000 0000 0000 0000],也就是打印出来的结果 0.

  一般而言,无符号加法等价于计算和模上2w

比如上面的两者计算和为 65536,模上 2w,即模上216=65536,结果为0

  ps:模表示两者相处取余

现在定义 0<= x,y <2w,那么它们运算满足下面关系:

  注意:当 2w <= x+y < 2w+1,对 x + y 进行2w的取模运算,与 x + y - 2w是等价的。

所以如果两个无符号整数作加法运算。当 x+y < 2w 时,它们的结果不变;当 2w <= x+y < 2w+1,它们的结果为 x+y-2w

3、补码加法运算 

  对于补码加法运算,因为补码编码是表示有符号的整数。

  对于一个 w 位的补码二进制整数[xw-1 , xw-2 , … , x2 , x1 , x0],其值大小满足 -2w-1 <= x <= 2w-1-1。那么 -2w <= x+y <=2w-1

想要表示上面的两个数相加和的范围,那么可能需要 w+1 来表示。这里我们也需要截取。

  与无符号加法运算不同,补码加法会出现三种情况:正溢出、正常、负溢出。定义如下:

    范围在  -2w-1  <= x,y <= 2w-1-1 做加法运算时,满足

  简单来说:补码加法运算就是先按照无符号加法进行运算,而后在进行无符号和有符号的转换。

这里我们看个例子:

#include <stdio.h>

int main()
{
	short int i = -32768;
 	short int j = i-1;
    printf("%d\n",j);
	return 0;
}

  结果为:

为什么 -32768-1 结果会是 32767?

  根据上面的公式:

  我们需要先将 -32768 和 -1 分别转换成无符号数进行加法运算,然后对得到的结果转换成有符号数。

  ①、-32768 转换成无符号数也就是 -32768+2^16=32768  

  ②、-1 转换成无符号数也就是-1+2^16=65535 

  ③、将上面两步的结果相加,然后转换成有符号数:

    即(65535+32768)-2^16=65535+32768-65536=32767

  这个过程用到的公式分别有:

4、无符号数乘法运算

  对于一个 w 位的无符号二进制整数[xw-1 , xw-2 , … , x2 , x1 , x0],其值大小满足 0 <= x <= 2w-1.

如果两个无符号数相乘,那么其结果应该是 0 <= x*y <=(2w-1)2=22w-2w+1+1。很显然表示这个范围的数可能需要 2w 位来表示。也就是 2w 位的整数乘积的低 w 位表示的值。根据我们前面讲的截断原理:可以看做是计算乘积模2w,即:

#include <stdio.h>

int main()
{
	unsigned short int i = 2;
 	unsigned short int j = i*2;
    printf("%u\n",j);
	return 0;
}

  比如上面的程序结果是:(2*2)mod 216=4 mod 65536=4

5、补码乘法 

   对于一个 w 位的补码二进制整数[xw-1 , xw-2 , … , x2 , x1 , x0],其值大小满足 -2w-1  <= x <= 2w-1-1

  那么它们的乘积x*y的取值范围在 -2w-1*(2w-1-1)=22w-2+2w-1 到 -2w-1*2w-1=-22w-2 之间。

同理 2w 位的整数乘积的低 w 位表示的值。根据我们前面讲的截断原理:补码乘法运算公式为

  假设对于w位的两个补码数来说,它们的乘积的低w位与无符号数乘积的低w位是一样的。这意味着计算机可以使用一个指令执行无符号和补码的乘法运算。下面我们来证明:

  其中x’和y’分别代表x和y的补码编码。

  那么:

(应用有符号转为无符号公式可得)

  即:          

(2w mod 2w = 0)

   由于模运算符,所有带权重 2w 的项都丢弃了,因此我们看到 x*y  和 x’*y’ 的低 w 位是相同的。

6、乘法优化

  由于在大多数机器上,整数乘法指令相当慢,需要 10 个或多个时钟周期,而其他整数运算(比如加法、减法、位级运算和移位)只需要 1 个时钟周期。

  因此编译器使用了一项重要的优化,使用移位和加法的组合来代替乘法。

结论:对于一个w位的二进制数来说,它与2k的乘积,等同于这个二进制数左移k位,在低位补k个0。

  证明过程如下:

  我们前面说过,整数乘法代价要比移位和加法代价大得多。那么C编译器会以移位、加法、减法的组合来消除很多整数乘以常数的情况。

  比如:

    计算 x*14 的乘积。 由于 14 = 23+22+21   ,那么编译器会将乘法重写为(x<<3)+(x<<2)+(x<<1)。这样就将乘法替换为三个移位和两个加法。无论 x 是无符号还是补码,甚至当乘法会导致溢出时,两个计算都会得到一样的结果。

    更好的编译器,可能会将 14 = 24-21。那么就会变成(x<<4)-(x<<1),只需要两个移位和一个减法。

7、除法运算

  实际上在大多数机器上,整数除法要比整数乘法更慢,需要 30 或更多个时钟周期。

结论:对于除以 2 的幂可以用移位来运算。无符号除法使用逻辑移位,补码除法使用算术移位。

  ①、逻辑右移在左端补k 个0。C语言中对于无符号数据必须逻辑右移。

  对于位向量[xw-1,xw-2,...,x0]逻辑右移 k 位会得到位向量:[0,...,0,xw-1,xw-2,...,xk]。转换成除法即 x/2k,从结果我们可以看出逻辑移位出现小数,总是舍入到零,比如 7/2应该是 3,而不是4

  ②、算术右移是在左端补 k 个最高有效位的值。对于一个正整数,由于最高有效位是 0 ,所以效果和逻辑右移是一样的;对于非负数,算术右移 k 位与除以 2k 是一样的。

    对于结果不需要舍入的情况结果是正确的。但是对于结果需要舍入的时候,算术右移导致的结果是向下舍入,比如 -7/2应该是 -3,而不是 -4。这是错误的。

8、总结

  那么本篇博客结束我们对于整数的表示以及运算都已经了解了。注意整数的运算我没有将减法,其实减法也就是转换为补码相加。而且计算机中也只有加法器,是没有减法器的。我们只需要将减法转换为加法运算即可。

  整数的表示和运算结束了,下一篇博客我们将会讲解浮点数,也就是有小数的数。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-09-21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、计算机整数运算的局限
  • 2、无符号数加法运算
  • 3、补码加法运算 
  • 4、无符号数乘法运算
  • 5、补码乘法 
  • 6、乘法优化
  • 7、除法运算
  • 8、总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档