Python协程深入理解

从语法上来看,协程和生成器类似,都是定义体中包含yield关键字的函数。 yield在协程中的用法:

  • 在协程中yield通常出现在表达式的右边,例如:datum = yield,可以产出值,也可以不产出--如果yield关键字后面没有表达式,那么生成器产出None.
  • 协程可能从调用方接受数据,调用方是通过send(datum)的方式把数据提供给协程使用,而不是next(...)函数,通常调用方会把值推送给协程。
  • 协程可以把控制器让给中心调度程序,从而激活其他的协程

所以总体上在协程中把yield看做是控制流程的方式。

了解协程的过程

先通过一个简单的协程的例子理解:

对上述例子的分析: yield 的右边没有表达式,所以这里默认产出的值是None 刚开始先调用了next(...)是因为这个时候生成器还没有启动,没有停在yield那里,这个时候也是无法通过send发送数据。所以当我们通过next(...)激活协程后,程序就会运行到x = yield,这里有个问题我们需要注意,x = yield这个表达式的计算过程是先计算等号右边的内容,然后在进行赋值,所以当激活生成器后,程序会停在yield这里,但并没有给x赋值。 当我们调用send方法后yield会收到这个值并赋值给x,而当程序运行到协程定义体的末尾时和用生成器的时候一样会抛出StopIteration异常

如果协程没有通过next(...)激活(同样我们可以通过send(None)的方式激活),但是我们直接send,会提示如下错误:

关于调用next(...)函数这一步通常称为”预激(prime)“协程,即让协程向前执行到第一个yield表达式,准备好作为活跃的协程使用

协程在运行过程中有四个状态:

  1. GEN_CREATE:等待开始执行
  2. GEN_RUNNING:解释器正在执行,这个状态一般看不到
  3. GEN_SUSPENDED:在yield表达式处暂停
  4. GEN_CLOSED:执行结束

通过下面例子来查看协程的状态:

接着再通过一个计算平均值的例子来继续理解:

这里是一个死循环,只要不停send值给协程,可以一直计算下去。 通过上面的几个例子我们发现,我们如果想要开始使用协程的时候必须通过next(...)方式激活协程,如果不预激,这个协程就无法使用,如果哪天在代码中遗忘了那么就出问题了,所以有一种预激协程的装饰器,可以帮助我们干这件事

预激协程的装饰器

下面是预激装饰器的演示例子:

 1 from functools import wraps
 2 
 3 
 4 def coroutine(func):
 5     @wraps(func)
 6     def primer(*args,**kwargs):
 7         gen = func(*args,**kwargs)
 8         next(gen)
 9         return gen
10     return primer
11 
12 
13 @coroutine
14 def averager():
15     total = 0.0
16     count = 0
17     average = None
18     while True:
19         term = yield average
20         total += term
21         count += 1
22         average = total/count
23 
24 
25 coro_avg = averager()
26 from inspect import getgeneratorstate
27 print(getgeneratorstate(coro_avg))
28 print(coro_avg.send(10))
29 print(coro_avg.send(30))
30 print(coro_avg.send(5))

关于预激,在使用yield from句法调用协程的时候,会自动预激活,这样其实与我们上面定义的coroutine装饰器是不兼容的,在python3.4里面的asyncio.coroutine装饰器不会预激协程,因此兼容yield from

终止协程和异常处理

协程中为处理的异常会向上冒泡,传给next函数或send函数的调用方(即触发协程的对象) 拿上面的代码举例子,如果我们发送了一个字符串而不是一个整数的时候就会报错,并且这个时候协程是被终止了

从python2.5开始客户端代码在生成器对象上调用两个方法,显示的把异常发送给协程 分别为:throw和close generator.throw:会让生成器在暂停的yield表达式处抛出指定的异常,如果生成器处理了抛出的异常,代码会向前执行到下一个yield表达式,而产出的值会成为调用generator.throw方法代码的返回值。如果生成器没有处理抛出的异常,异常会向上冒泡,传到调用方的上下文中。 generator.close:会让生成器在暂停的yield表达式处抛出GeneratorExit异常。如果生成器没有处理这个异常,或者抛出了StopIteration异常,调用方不会报错,如果收到GeneratorExit异常,生成器一定不能产出值,否则解释器会抛出RuntimeError异常。生成器抛出的异常会向上冒泡,传给调用方。 下面是一个例子:

当传入我们定义的异常时不会影响协程,协程不会停止,可以继续send,但是如果是没有处理的异常的时候,就会报错,并且协程会被终止

让协程返回值

通过下面的例子进行演示如何获取协程的返回值:

 1 from collections import namedtuple
 2 
 3 
 4 Result = namedtuple("Result","colunt average")
 5 
 6 
 7 def averager():
 8     total = 0.0
 9     count = 0
10     average = None
11     while True:
12         term = yield
13         if term is None:
14             break
15         total += term
16         count+=1
17         average = total/count
18     return Result(count,average)
19 
20 coro_avg = averager()
21 next(coro_avg)
22 coro_avg.send(10)
23 coro_avg.send(30)
24 coro_avg.send(5)
25 try:
26     coro_avg.send(None)
27 except StopIteration as e:
28     result = e.value
29     print(result)

这样就可以获取到最后的结果:

其实相对来说上面这种方式获取返回值比较麻烦,而yield from 结构会自动捕获StopIteration异常,这种处理方式与for循环处理StopIteration异常的方式一样,循环机制使我们更容易理解处理异常,对于yield from来说,解释器不仅会捕获StopIteration异常,还会把value属性的值变成yield from表达式的值

关于yield from

在生成器gen中使用yield from subgen()时,subgen会获得控制权,把产出的值传给gen的调用方,即调用方可以直接控制subgen,同时,gen会阻塞,等待subgen终止

yield from x表达式对x对象所做的第一件事是,调用iter(x),从中获取迭代器,因此x可以是任何可迭代的对象

下面是yield from可以简化yield表达式的例子:

 1 def gen():
 2     for c in "AB":
 3         yield c
 4     for i in range(1,3):
 5         yield i
 6 
 7 print(list(gen()))
 8 
 9 def gen2():
10     yield from "AB"
11     yield from range(1,3)
12 
13 print(list(gen2()))

这两种的方式的结果是一样的,但是这样看来yield from更加简洁,但是yield from的作用可不仅仅是替代产出值的嵌套for循环。 yield from的主要功能是打开双向通道,把最外层的调用方与最内层的子生成器连接起来,这样二者可以直接发送和产出值,还可以直接传入异常,而不用再像之前那样在位于中间的协程中添加大量处理异常的代码

通过yield from还可以链接可迭代对象

委派生成器在yield from 表达式处暂停时,调用方可以直接把数据发给子生成器,子生成器再把产出产出值发给调用方,子生成器返回之后,解释器会抛出StopIteration异常,并把返回值附加到异常对象上,此时委派生成器会恢复。

下面是一个完整的例子代码

 1 from collections import namedtuple
 2 
 3 
 4 Result = namedtuple('Result', 'count average')
 5 
 6 
 7 # 子生成器
 8 def averager():
 9     total = 0.0
10     count = 0
11     average = None
12     while True:
13         term = yield
14         if term is None:
15             break
16         total += term
17         count += 1
18         average = total/count
19     return Result(count, average)
20 
21 
22 # 委派生成器
23 def grouper(result, key):
24     while True:
25         result[key] = yield from averager()
26 
27 
28 # 客户端代码,即调用方
29 def main(data):
30     results = {}
31     for key,values in data.items():
32         group = grouper(results,key)
33         next(group)
34         for value in values:
35             group.send(value)
36         group.send(None) #这里表示要终止了
37 
38     report(results)
39 
40 
41 # 输出报告
42 def report(results):
43     for key, result in sorted(results.items()):
44         group, unit = key.split(';')
45         print('{:2} {:5} averaging {:.2f}{}'.format(
46             result.count, group, result.average, unit
47         ))
48 
49 data = {
50     'girls;kg':
51         [40.9, 38.5, 44.3, 42.2, 45.2, 41.7, 44.5, 38.0, 40.6, 44.5],
52     'girls;m':
53         [1.6, 1.51, 1.4, 1.3, 1.41, 1.39, 1.33, 1.46, 1.45, 1.43],
54     'boys;kg':
55         [39.0, 40.8, 43.2, 40.8, 43.1, 38.6, 41.4, 40.6, 36.3],
56     'boys;m':
57         [1.38, 1.5, 1.32, 1.25, 1.37, 1.48, 1.25, 1.49, 1.46],
58 }
59 
60 
61 if __name__ == '__main__':
62     main(data)

关于上述代码着重解释一下关于委派生成器部分,这里的循环每次迭代时会新建一个averager实例,每个实例都是作为协程使用的生成器对象。

grouper发送的每个值都会经由yield from处理,通过管道传给averager实例。grouper会在yield from表达式处暂停,等待averager实例处理客户端发来的值。averager实例运行完毕后,返回的值会绑定到results[key]上,while 循环会不断创建averager实例,处理更多的值

并且上述代码中的子生成器可以使用return 返回一个值,而返回的值会成为yield from表达式的值。

关于yield from的意义

关于yield from 六点重要的说明:

  1. 子生成器产出的值都直接传给委派生成器的调用方(即客户端代码)
  2. 使用send()方法发送给委派生成器的值都直接传给子生成器。如果发送的值为None,那么会给委派调用子生成器的__next__()方法。如果发送的值不是None,那么会调用子生成器的send方法,如果调用的方法抛出StopIteration异常,那么委派生成器恢复运行,任何其他异常都会向上冒泡,传给委派生成器
  3. 生成器退出时,生成器(或子生成器)中的return expr表达式会出发StopIteration(expr)异常抛出
  4. yield from表达式的值是子生成器终止时传给StopIteration异常的第一个参数。yield from 结构的另外两个特性与异常和终止有关。
  5. 传入委派生成器的异常,除了GeneratorExit之外都传给子生成器的throw()方法。如果调用throw()方法时抛出StopIteration异常,委派生成器恢复运行。StopIteration之外的异常会向上冒泡,传给委派生成器
  6. 如果把GeneratorExit异常传入委派生成器,或者在委派生成器上调用close()方法,那么在子生成器上调用clsoe()方法,如果它有的话。如果调用close()方法导致异常抛出,那么异常会向上冒泡,传给委派生成器,否则委派生成器抛出GeneratorExit异常

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏java思维导图

深入浅出Java中JVM内存管理

Java岗位面试,JVM是对程序员基本功考察,通常会问你对JVM了解吗? 可以分几部分回答这个问题,首先JVM内存划分 | JVM垃圾回收的含义 | 有哪...

662
来自专栏Jimoer

jvm学习记录-对象的创建、对象的内存布局、对象的访问定位

简述 今天继续写《深入理解java虚拟机》的对象创建的理解。这次和上次隔的时间有些长,是因为有些东西确实不好理解,就查阅各种资料,然后弄明白了才来做记录。 (此...

2617
来自专栏皮皮之路

【JDK1.8】JUC——LockSupport

672
来自专栏Android知识点总结

05-图解数据结构之队列--Queue

854
来自专栏Java职业技术分享

可能是把Java内存区域讲的最清楚的一篇文章

对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像C/C++程序开发程序员这样为内一个 new 操作去写对应的 delete/free 操作,不...

660
来自专栏皮皮之路

【JDK1.8】JUC——LockSupport

35517
来自专栏wOw的Android小站

[Java] CountDownLatch 与 CyclicBarrier

A synchronization aid that allows one or more threads to wait until a set of ope...

371
来自专栏java一日一条

Java编程性能优化一些事儿

使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面:

370
来自专栏C/C++基础

C++中cin的详细用法

cin是C++编程语言中的标准输入流对象,即istream类的对象。cin主要用于从标准输入读取数据,这里的标准输入,指的是终端的键盘。此外,cout是流的对象...

923
来自专栏老九学堂

原来C语言和其他高级语言的最大的区别是这个...

我们需要知道——变量,其实是内存地址的一个抽像名字罢了。在静态编译的程序中,所有的变量名都会在编译时被转成内存地址。机器是不知道我们取的名字的,只知道地址。

903

扫码关注云+社区