前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Scalaz(8)- typeclass:Monoid and Foldable

Scalaz(8)- typeclass:Monoid and Foldable

作者头像
用户1150956
发布2018-01-05 10:06:16
1K0
发布2018-01-05 10:06:16
举报

  Monoid是种最简单的typeclass类型。我们先看看scalaz的Monoid typeclass定义:scalaz/Monoid.scala

代码语言:javascript
复制
1 trait Monoid[F] extends Semigroup[F] { self =>
2   ////
3   /** The identity element for `append`. */
4   def zero: F
5 ...

Monoid trait又继承了Semigroup:scalaz/Semigroup.scala

代码语言:javascript
复制
 1 trait Semigroup[F]  { self =>
 2   ////
 3   /**
 4    * The binary operation to combine `f1` and `f2`.
 5    *
 6    * Implementations should not evaluate the by-name parameter `f2` if result
 7    * can be determined by `f1`.
 8    */
 9   def append(f1: F, f2: => F): F
10 ...

所以获取一个类型的Monoid实例需要实现zero和append这两个抽象函数。实际上Monoid typeclass也就是支持了append(|+|)这么一个简单的操作。scalaz为一些标准类型定义了Monoid实例:

代码语言:javascript
复制
1 0 |+| 30                                         //> res0: Int = 50
2 20.some |+| 30.some                               //> res1: Option[Int] = Some(50)
3 List(1,2,3) |+| List(4,5,6)                       //> res2: List[Int] = List(1, 2, 3, 4, 5, 6)
4 Tags.Multiplication(3) |+| Monoid[Int @@ Tags.Multiplication].zero
5                                                   //> res3: scalaz.@@[Int,scalaz.Tags.Multiplication] = 3
6 Tags.Conjunction(true) |+| Tags.Conjunction(false)//> res4: scalaz.@@[Boolean,scalaz.Tags.Conjunction] = false
7 Tags.Disjunction(true) |+| Tags.Disjunction(false)//> res5: scalaz.@@[Boolean,scalaz.Tags.Disjunction] = true
8 Monoid[Boolean @@ Tags.Conjunction].zero          //> res6: scalaz.@@[Boolean,scalaz.Tags.Conjunction] = true
9 Monoid[Boolean @@ Tags.Disjunction].zero          //> res7: scalaz.@@[Boolean,scalaz.Tags.Disjunction] = false

就这么来看好像没什么值得提的。不过Ordering的Monoid倒是值得研究一下。我们先看看Ordering trait:scalaz/Ordering.scala

代码语言:javascript
复制
 1  implicit val orderingInstance: Enum[Ordering] with Show[Ordering] with Monoid[Ordering] = new Enum[Ordering] with Show[Ordering] with Monoid[Ordering] {
 2     def order(a1: Ordering, a2: Ordering): Ordering = (a1, a2) match {
 3       case (LT, LT)      => EQ
 4       case (LT, EQ | GT) => LT
 5       case (EQ, LT)      => GT
 6       case (EQ, EQ)      => EQ
 7       case (EQ, GT)      => LT
 8       case (GT, LT | EQ) => GT
 9       case (GT, GT)      => EQ
10     }
11 
12     override def shows(f: Ordering) = f.name
13 
14     def append(f1: Ordering, f2: => Ordering): Ordering = f1 match {
15       case Ordering.EQ => f2
16       case o           => o
17     }
18 ...

这里定义了Ordering的Monoid实例。它的append函数意思是:两个Ordering类型值f1,f2的append操作结果:假如f1是EQ就是f2,否则是f1:

代码语言:javascript
复制
 1 (Ordering.EQ: Ordering) |+| (Ordering.GT: Ordering)
 2                                                   //> res8: scalaz.Ordering = GT
 3 (Ordering.EQ: Ordering) |+| (Ordering.LT: Ordering)
 4                                                   //> res9: scalaz.Ordering = LT
 5 (Ordering.GT: Ordering) |+| (Ordering.EQ: Ordering)
 6                                                   //> res10: scalaz.Ordering = GT
 7 (Ordering.LT: Ordering) |+| (Ordering.EQ: Ordering)
 8                                                   //> res11: scalaz.Ordering = LT
 9 (Ordering.LT: Ordering) |+| (Ordering.GT: Ordering)
10                                                   //> res12: scalaz.Ordering = LT
11 (Ordering.GT: Ordering) |+| (Ordering.LT: Ordering)
12                                                   //> res13: scalaz.Ordering = GT

如果我用以上的特性来比较两个String的长度:如果长度相等则再比较两个String的字符顺序。这个要求刚好符合了Ordering Monoid实例的append操作:

代码语言:javascript
复制
1 3 ?|? 4                                           //> res14: scalaz.Ordering = LT
2 "abc" ?|? "bac"                                   //> res15: scalaz.Ordering = LT
3 def strlenCompare(lhs: String, rhs: String): Ordering =
4  (lhs.length ?|? rhs.length) |+| (lhs ?|? rhs)    //> strlenCompare: (lhs: String, rhs: String)scalaz.Ordering
5 
6 strlenCompare("abc","aabc")                       //> res16: scalaz.Ordering = LT
7 strlenCompare("abd","abc")                        //> res17: scalaz.Ordering = GT

这个示范倒是挺新鲜的。

好了,单看Monoid操作会觉着没什么特别,好像不值得研究。实际上Monoid的主要用途是在配合可折叠数据结构(Foldable)对结构内部元素进行操作时使用的。我们再看看这个Foldable typeclass:scalaz/Foldable.scala

代码语言:javascript
复制
 1 trait Foldable[F[_]]  { self =>
 2   ////
 3   import collection.generic.CanBuildFrom
 4   import collection.immutable.IndexedSeq
 5 
 6   /** Map each element of the structure to a [[scalaz.Monoid]], and combine the results. */
 7   def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B
 8   /** As `foldMap` but returning `None` if the foldable is empty and `Some` otherwise */
 9   def foldMap1Opt[A,B](fa: F[A])(f: A => B)(implicit F: Semigroup[B]): Option[B] = {
10     import std.option._
11     foldMap(fa)(x => some(f(x)))
12   }
13 
14   /**Right-associative fold of a structure. */
15   def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B
16 ...

Foldable typeclass提供了许多注入方法支持折叠操作: scalaz/syntax/FoldableSyntax.scala

代码语言:javascript
复制
 1 final class FoldableOps[F[_],A] private[syntax](val self: F[A])(implicit val F: Foldable[F]) extends Ops[F[A]] {
 2   ////
 3   import collection.generic.CanBuildFrom
 4   import Leibniz.===
 5   import Liskov.<~<
 6 
 7   final def foldMap[B: Monoid](f: A => B = (a: A) => a): B = F.foldMap(self)(f)
 8   final def foldMap1Opt[B: Semigroup](f: A => B = (a: A) => a): Option[B] = F.foldMap1Opt(self)(f)
 9   final def foldRight[B](z: => B)(f: (A, => B) => B): B = F.foldRight(self, z)(f)
10   final def foldMapRight1Opt[B](z: A => B)(f: (A, => B) => B): Option[B] = F.foldMapRight1Opt(self)(z)(f)
11   final def foldRight1Opt(f: (A, => A) => A): Option[A] = F.foldRight1Opt(self)(f)
12   final def foldLeft[B](z: B)(f: (B, A) => B): B = F.foldLeft(self, z)(f)
13   final def foldMapLeft1Opt[B](z: A => B)(f: (B, A) => B): Option[B] = F.foldMapLeft1Opt(self)(z)(f)
14   final def foldLeft1Opt(f: (A, A) => A): Option[A] = F.foldLeft1Opt(self)(f)
15   final def foldRightM[G[_], B](z: => B)(f: (A, => B) => G[B])(implicit M: Monad[G]): G[B] = F.foldRightM(self, z)(f)
16   final def foldLeftM[G[_], B](z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B] = F.foldLeftM(self, z)(f)
17   final def foldMapM[G[_] : Monad, B : Monoid](f: A => G[B]): G[B] = F.foldMapM(self)(f)
18   final def fold(implicit A: Monoid[A]): A = F.fold(self)(A)
19   final def foldr[B](z: => B)(f: A => (=> B) => B): B = F.foldr(self, z)(f)
20   final def foldr1Opt(f: A => (=> A) => A): Option[A] = F.foldr1Opt(self)(f)
21   final def foldl[B](z: B)(f: B => A => B): B = F.foldl(self, z)(f)
22   final def foldl1Opt(f: A => A => A): Option[A] = F.foldl1Opt(self)(f)
23   final def foldrM[G[_], B](z: => B)(f: A => ( => B) => G[B])(implicit M: Monad[G]): G[B] = F.foldrM(self, z)(f)
24   final def foldlM[G[_], B](z: B)(f: B => A => G[B])(implicit M: Monad[G]): G[B] = F.foldlM(self, z)(f)
25   final def length: Int = F.length(self)
26   final def index(n: Int): Option[A] = F.index(self, n)
27   final def indexOr(default: => A, n: Int): A = F.indexOr(self, default, n)
28   final def sumr(implicit A: Monoid[A]): A = F.foldRight(self, A.zero)(A.append)
29   final def suml(implicit A: Monoid[A]): A = F.foldLeft(self, A.zero)(A.append(_, _))
30   final def toList: List[A] = F.toList(self)
31   final def toVector: Vector[A] = F.toVector(self)
32   final def toSet: Set[A] = F.toSet(self)
33   final def toStream: Stream[A] = F.toStream(self)
34   final def toIList: IList[A] = F.toIList(self)
35   final def toEphemeralStream: EphemeralStream[A] = F.toEphemeralStream(self)
36   final def to[G[_]](implicit c: CanBuildFrom[Nothing, A, G[A]]) = F.to[A, G](self)
37   final def all(p: A => Boolean): Boolean = F.all(self)(p)
38   final def ∀(p: A => Boolean): Boolean = F.all(self)(p)
39   final def allM[G[_]: Monad](p: A => G[Boolean]): G[Boolean] = F.allM(self)(p)
40   final def anyM[G[_]: Monad](p: A => G[Boolean]): G[Boolean] = F.anyM(self)(p)
41   final def any(p: A => Boolean): Boolean = F.any(self)(p)
42   final def ∃(p: A => Boolean): Boolean = F.any(self)(p)
43   final def count: Int = F.count(self)
44   final def maximum(implicit A: Order[A]): Option[A] = F.maximum(self)
45   final def maximumOf[B: Order](f: A => B): Option[B] = F.maximumOf(self)(f)
46   final def maximumBy[B: Order](f: A => B): Option[A] = F.maximumBy(self)(f)
47   final def minimum(implicit A: Order[A]): Option[A] = F.minimum(self)
48   final def minimumOf[B: Order](f: A => B): Option[B] = F.minimumOf(self)(f)
49   final def minimumBy[B: Order](f: A => B): Option[A] = F.minimumBy(self)(f)
50   final def longDigits(implicit d: A <:< Digit): Long = F.longDigits(self)
51   final def empty: Boolean = F.empty(self)
52   final def element(a: A)(implicit A: Equal[A]): Boolean = F.element(self, a)
53   final def splitWith(p: A => Boolean): List[NonEmptyList[A]] = F.splitWith(self)(p)
54   final def selectSplit(p: A => Boolean): List[NonEmptyList[A]] = F.selectSplit(self)(p)
55   final def collapse[X[_]](implicit A: ApplicativePlus[X]): X[A] = F.collapse(self)
56   final def concatenate(implicit A: Monoid[A]): A = F.fold(self)
57   final def intercalate(a: A)(implicit A: Monoid[A]): A = F.intercalate(self, a)
58   final def traverse_[M[_]:Applicative](f: A => M[Unit]): M[Unit] = F.traverse_(self)(f)
59   final def traverseU_[GB](f: A => GB)(implicit G: Unapply[Applicative, GB]): G.M[Unit] =
60     F.traverseU_[A, GB](self)(f)(G)
61   final def traverseS_[S, B](f: A => State[S, B]): State[S, Unit] = F.traverseS_(self)(f)
62   final def sequence_[G[_], B](implicit ev: A === G[B], G: Applicative[G]): G[Unit] = F.sequence_(ev.subst[F](self))(G)
63   final def sequenceS_[S, B](implicit ev: A === State[S,B]): State[S,Unit] = F.sequenceS_(ev.subst[F](self))
64   def sequenceF_[M[_],B](implicit ev: F[A] <~< F[Free[M,B]]): Free[M, Unit] = F.sequenceF_(ev(self))
65   final def msuml[G[_], B](implicit ev: A === G[B], G: PlusEmpty[G]): G[B] = F.foldLeft(ev.subst[F](self), G.empty[B])(G.plus[B](_, _))
66   ////
67 }

这简直就是一个完整的函数库嘛。scalaz为大多数标准库中的集合类型提供了Foldable实例,也就是说大多数scala集合类型都支持这么一堆折叠操作函数。我还看不到任何需要去自定义集合类型,标准库的集合类型加上Foldable typeclass应该足够用了。

在Foldable typeclass中比较重要的函数就是foldMap了:

代码语言:javascript
复制
1 trait Foldable[F[_]]  { self =>
2   ////
3   import collection.generic.CanBuildFrom
4   import collection.immutable.IndexedSeq
5 
6   /** Map each element of the structure to a [[scalaz.Monoid]], and combine the results. */
7   def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B

首先,foldMap需要Monoid[B]实例来实现。用List来举例:List trait 继承了Traverse:scalaz/std/List.scala

代码语言:javascript
复制
1 trait ListInstances extends ListInstances0 {
2   implicit val listInstance = new Traverse[List] with MonadPlus[List] with Zip[List] with Unzip[List] with Align[List] with IsEmpty[List] with Cobind[List] {
3 ...

在Traverse typeclass里定义了Foldable实例:scalaz/Traverse.scala

代码语言:javascript
复制
 1  def foldLShape[A,B](fa: F[A], z: B)(f: (B,A) => B): (B, F[Unit]) =
 2     runTraverseS(fa, z)(a => State.modify(f(_, a)))
 3 
 4   override def foldLeft[A,B](fa: F[A], z: B)(f: (B,A) => B): B = foldLShape(fa, z)(f)._1
 5 
 6   def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B = foldLShape(fa, F.zero)((b, a) => F.append(b, f(a)))._1
 7 
 8   override def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B) =
 9     foldMap(fa)((a: A) => (Endo.endo(f(a, _: B)))) apply z
10 ...

这个foldMap就是一个游览可折叠结构的函数。在游览过程中用Monoid append对结构中元素进行操作。值得注意的是这个f: A => B参数:这个函数是用来在append操作之前先对内部元素进行一次转变(transform):

代码语言:javascript
复制
1 List(1,2,3) foldMap {x => x}                      //> res18: Int = 6
2 List(1,2,3) foldMap {x => (x + 3).toString}       //> res19: String = 456 变成String操作

我们试着用一些实际的例子来示范Monoid的用法。上面提到Monoid在可折叠数据结构里的元素连续处理有着很好的应用,我们先试一个例子:确定一个可折叠数据结构F[A]中的元素A是否排序的:

def ordered(xs: List[Int]): Boolean  //判断xs是否按序排列

由于我们必须游览List xs,所以用Monoid对元素Int进行判断操作是可行的方法。我们先设计一个对比数据结构:

Option[(min: Int, max: Int. ordered: Boolean)], 它记录了当前元素的状态,包括最小,最大,是否排序的:

代码语言:javascript
复制
 1 /判断xs是否是排序的
 2 def ordered(xs: List[Int]): Boolean = {
 3     val monoid = new Monoid[Option[(Int,Int,Boolean)]] {  //对类型Option[(Int,Int,Boolean)]定义一个Monoid实例
 4         def zero = None
 5         def append(a1: Option[(Int,Int,Boolean)], a2: => Option[(Int,Int,Boolean)]) =  //对连续两个元素进行对比操作
 6           (a1,a2) match {
 7             case (x,None) => x
 8             case (None,x) => x    //保留不为None的状态
 9             case (Some((min1,max1,ord1)),Some((min2,max2,ord2))) =>  //如果max1 <= min2状态即为true
10                  Some((min1 min min2, max1 max max2, ord1 && ord2 && (max1 <= min2)))  //更新min,max和ord
11           }
12     }  //我们需要把元素转换成Option((Int,Int,Boolean))
13     (xs.foldMap(i => Option((i, i, true)))(monoid)).map(_._3) getOrElse(true)
14 }                                                 //> ordered: (xs: List[Int])Boolean
15 
16 ordered(List(1,2,12,34))                          //> res21: Boolean = true
17 ordered(List(1,2,34,23))                          //> res22: Boolean = false

注意这个i => Option((i,i,true)) 转换(transform)。

由于Monoid是种极简单的类型,所以很容易对Monoid进行组合。Monoid组合产生的结果还是Monoid,并且用起来可以更方便:

代码语言:javascript
复制
1 def productMonoid[A,B](ma: Monoid[A], mb: Monoid[B]): Monoid[(A,B)] = new Monoid[(A,B)] {
2     def zero = (ma.zero, mb.zero)
3     def append(x: (A,B), y: => (A,B)): (A,B) = (ma.append(x._1, y._1), mb.append(x._2, y._2))
4 }                                                 //> productMonoid: [A, B](ma: scalaz.Monoid[A], mb: scalaz.Monoid[B])scalaz.Mon
5                                                   //| oid[(A, B)]
6 val pm = productMonoid(Monoid[Int],Monoid[List[Int]])
7                                                   //> pm  : scalaz.Monoid[(Int, List[Int])] = Exercises.monoid$$anonfun$main$1$$a
8                                                   //| non$3@72d1ad2e

以上的pm就是两个Monoid的组合,结果是一个tuple2Monoid。我们可以使用这个tuple2Monoid对可折叠数据结构中元素进行并行操作。比如我们可以在游览一个List[Int]时同时统计长度(list length)及乘积(product):

代码语言:javascript
复制
 1 val intMultMonoid = new Monoid[Int] {
 2     def zero = 1
 3     def append(a1: Int, a2: => Int): Int = a1 * a2
 4 }                                                 //> intMultMonoid  : scalaz.Monoid[Int] = Exercises.monoid$$anonfun$main$1$$ano
 5                                                   //| n$1@6c64cb25
 6 def productMonoid[A,B](ma: Monoid[A], mb: Monoid[B]): Monoid[(A,B)] = new Monoid[(A,B)] {
 7     def zero = (ma.zero, mb.zero)
 8     def append(x: (A,B), y: => (A,B)): (A,B) = (ma.append(x._1, y._1), mb.append(x._2, y._2))
 9 }                                                 //> productMonoid: [A, B](ma: scalaz.Monoid[A], mb: scalaz.Monoid[B])scalaz.Mon
10                                                   //| oid[(A, B)]
11 val pm = productMonoid(Monoid[Int @@ Tags.Multiplication],Monoid[Int])
12                                                   //> pm  : scalaz.Monoid[(scalaz.@@[Int,scalaz.Tags.Multiplication], Int)] = Exe
13                                                   //| rcises.monoid$$anonfun$main$1$$anon$3@72d1ad2e
14 List(1,2,3,4,6).foldMap(i => (i, 1))(productMonoid(intMultMonoid,Monoid[Int]))
15                                                   //> res23: (Int, Int) = (144,5)

我们再来一个合并多层map的Monoid:

代码语言:javascript
复制
 1 def mapMergeMonoid[K,V](V: Monoid[V]): Monoid[Map[K, V]] =
 2   new Monoid[Map[K, V]] {
 3     def zero = Map[K,V]()
 4     def append(a: Map[K, V], b: => Map[K, V]) =
 5       (a.keySet ++ b.keySet).foldLeft(zero) { (acc,k) =>
 6         acc.updated(k, V.append(a.getOrElse(k, V.zero),
 7                             b.getOrElse(k, V.zero)))
 8       }
 9   }                                               //> mapMergeMonoid: [K, V](V: scalaz.Monoid[V])scalaz.Monoid[Map[K,V]]
10     
11  val M: Monoid[Map[String, Map[String, Int]]] = mapMergeMonoid(mapMergeMonoid(Monoid[Int]))
12                                                   //> M  : scalaz.Monoid[Map[String,Map[String,Int]]] = Exercises.monoid$$anonfun
13                                                   //| $main$1$$anon$4@79e2c065
14  val m1 = Map("o1" -> Map("i1" -> 1, "i2" -> 2))  //> m1  : scala.collection.immutable.Map[String,scala.collection.immutable.Map[
15                                                   //| String,Int]] = Map(o1 -> Map(i1 -> 1, i2 -> 2))
16  val m2 = Map("o1" -> Map("i2" -> 3))             //> m2  : scala.collection.immutable.Map[String,scala.collection.immutable.Map[
17                                                   //| String,Int]] = Map(o1 -> Map(i2 -> 3))
18  val m3 = M.append(m1, m2)                        //> m3  : Map[String,Map[String,Int]] = Map(o1 -> Map(i1 -> 1, i2 -> 5))

我们可以用这个组合成的M的append操作进行map的深度合并。m1,m2合并后:Map(o1->Map("i1"->1,"i2" -> 5))。

我们还可以用这个Monoid来统计一段字串内字符发生的频率:

代码语言:javascript
复制
1 def frequencyMap[A](as: List[A]): Map[A, Int] =
2     as.foldMap((a: A) => Map(a -> 1))(mapMergeMonoid[A, Int](Monoid[Int]))
3                                                   //> frequencyMap: [A](as: List[A])Map[A,Int]
4 frequencyMap("the brown quik fox is running quikly".toList)
5   //> res24: Map[Char,Int] = Map(e -> 1, s -> 1, x -> 1, n -> 4, y -> 1, t -> 1, 
6   //| u -> 3, f -> 1, i -> 4,   -> 6, q -> 2, b -> 1, g -> 1, l -> 1, h -> 1, r -
7   //| > 2, w -> 1, k -> 2, o -> 2)

我们现在可以体会到Monoid必须在可折叠数据结构(Foldable)内才能正真发挥作用。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2015-10-09 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档