[算法题] 计算结构体的大小

计算结构体的大小

     C代码中定义的结构体是一块连续内存,各成员按照定义的顺序依次在其中存放。编译器在完成语法分析后,需要计算它的大小,然后才能正确地为结构体分配空间。为了让结构体的所有成员都能正确、快速地访问,需要字节对齐。

     字节对齐体现为:在成员之间可能增加补齐字节,以调整每个成员的偏移;结构体末尾,也可能增加补充字节。所有补齐字节计入结构体的大小。

     请写一个程序来计算结构体的大小,要考虑字节对齐,同时要支持结构体多层嵌套的情况。

结构体大小的计算

成员在结构体内的偏移必须是它的字节对齐值的倍数。

l 字节对齐值: 

   1)基本类型char、short、int、double的字节对齐值依次为1、2、4、8。

   2)数组的字节对齐值等于它的一个元素的字节对齐值。

   3)结构体的字节对齐值等于它的所有成员的字节对齐值的最大值。

2 大小的计算: 

  1)基本类型char、short、int、double的大小依次为1、2、4、8字节。

  2)数组的大小等于它的一个元素的大小乘以元素个数。

  3)结构体的大小要补齐到它自己的字节对齐值的倍数,补齐字节在末尾。

要求

实现以下接口:

1.开始结构体定义 

2.添加基本类型成员

3.添加数组成员 

4.添加嵌套结构体成员

5.结束嵌套结构体成员

6.完成结构体定义,输出它的大小 

调用者会保证: 

1.结构体的开始和结束是匹配的。 

2.不需要考虑空的结构体。

3.数组只限于一维的基本类型的数组。 

4.最多20层嵌套(嵌套的情况参考示例)

StructSize.h

#ifndef _STRUCT_SIZE_H
#define _STRUCT_SIZE_H

enum Type { CHAR_TYPE, SHORT_TYPE, INT_TYPE, DOUBLE_TYPE };

/*********************** 自定义数据结构 **************************/
typedef struct _tblNode
{
    enum Type type;
    int  size;
}tblNode;

typedef struct _structType
{
    int size;
    int align;
}StructType;
/******************************************************************/


/* 功能:开始定义结构体
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int start_struct(void);

/* 功能:添加基本类型成员
 * 输入:类型
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int add_basic_type(enum Type type);

/* 功能:添加数组类型成员
 * 输入:type:数组元素类型
 *    number:数组元素数
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int add_array(enum Type type, unsigned int number);

/* 功能:添加嵌套结构体成员
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int begin_nested_struct(void);

/* 功能:结束嵌套结构体成员
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int end_nested_struct(void);

/* 功能:完成结构体定义,计算它的大小
 * 输入:无
 * 输出:size:结构体大小
 * 返回:正常返回0,失败返回-1
 */
int finish_struct(unsigned int *size);

#endif

StructSize.cpp

// StructSize.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "StructSize.h"
#include <stdio.h>

#define PRINT_ON 0

tblNode g_tbl[] =
{
    {CHAR_TYPE,   1},
    {SHORT_TYPE,  2},
    {INT_TYPE,    4},
    {DOUBLE_TYPE, 8},
};

StructType g_astResult[20] = {0};
int g_iIndex = 0;

void Print(void)
{
#if PRINT_ON   
    printf("\nsize = %d \t align = %d", g_astResult[g_iIndex].size, g_astResult[g_iIndex].align);
#endif
}

/* 功能:开始定义结构体
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int start_struct(void)
{
    g_iIndex = 0;
       g_astResult[g_iIndex].size  = 0;
    g_astResult[g_iIndex].align = 1;
    return 0;
}

/* 功能:添加基本类型成员
 * 输入:类型
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int add_basic_type(enum Type type)
{
    int iSize = 0;
    
    if (type > DOUBLE_TYPE)
    {
        return -1;
    }

    iSize = g_tbl[type].size;
    while (0 != g_astResult[g_iIndex].size % iSize)
    {
        g_astResult[g_iIndex].size++;
    }

    g_astResult[g_iIndex].size += iSize;
    g_astResult[g_iIndex].align = (g_astResult[g_iIndex].align > iSize) ? g_astResult[g_iIndex].align : iSize;

    Print();
    return 0;
}

/* 功能:添加数组类型成员
 * 输入:type:数组元素类型
 *    number:数组元素数
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int add_array(enum Type type, unsigned int number)
{
       int iSize = 0;
    
    if (type > DOUBLE_TYPE)
    {
        return -1;
    }

    iSize = g_tbl[type].size;
    while (0 != g_astResult[g_iIndex].size % iSize)
    {
        g_astResult[g_iIndex].size++;
    }

    g_astResult[g_iIndex].size += iSize * number;
    g_astResult[g_iIndex].align = (g_astResult[g_iIndex].align > iSize) ? g_astResult[g_iIndex].align : iSize;

    Print();
    return 0;
}

/* 功能:添加嵌套结构体成员
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int begin_nested_struct(void)
{
    g_iIndex++;
    g_astResult[g_iIndex].size  = 0;
    g_astResult[g_iIndex].align = 1;

    Print();
    return 0;
}

/* 功能:结束嵌套结构体成员
 * 输入:无
 * 输出:无
 * 返回:正常返回0,失败返回-1
 */
int end_nested_struct(void)
{
    int iFatherStructSize = 0;
    int iSonStructSize = 0;
    
       while (g_astResult[g_iIndex].size % g_astResult[g_iIndex].align != 0)
    {
        g_astResult[g_iIndex].size++;
    }
    g_iIndex--;

    if (g_iIndex >= 0)
    {
        iFatherStructSize = g_astResult[g_iIndex].align;
        iSonStructSize    = g_astResult[g_iIndex + 1].align;
        g_astResult[g_iIndex].align = (iFatherStructSize > iSonStructSize) ? iFatherStructSize : iSonStructSize;
        while(g_astResult[g_iIndex].size% g_astResult[g_iIndex].align != 0)
        {
            g_astResult[g_iIndex].size++;
        }
        g_astResult[g_iIndex].size += g_astResult[g_iIndex + 1].size;
    }

    Print();
    return 0;
}

/* 功能:完成结构体定义,计算它的大小
 * 输入:无
 * 输出:size:结构体大小
 * 返回:正常返回0,失败返回-1
 */
int finish_struct(unsigned int *size)
{
    if (0 != g_iIndex)
    {
        return -1;
    }

    while (0 != g_astResult[g_iIndex].size % g_astResult[g_iIndex].align)
    {
        g_astResult[g_iIndex].size++;
    }
    *size = g_astResult[g_iIndex].size;
    
    Print();
    return 0;
}

main.cpp

// StructSize.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "StructSize.h"
#include <iostream>

void CPPUNIT_ASSERT(int iRet)
{
    if (0 == iRet)
    {
        printf("ERROR!\r\n");
        system("pause");
    }
}

void TestCase01()
{
    unsigned int size;
    CPPUNIT_ASSERT(0 == start_struct());
    CPPUNIT_ASSERT(0 == add_basic_type(INT_TYPE));
    CPPUNIT_ASSERT(0 == begin_nested_struct());
    CPPUNIT_ASSERT(0 == add_basic_type(SHORT_TYPE));
    CPPUNIT_ASSERT(0 == begin_nested_struct());
    CPPUNIT_ASSERT(0 == add_basic_type(DOUBLE_TYPE));
    CPPUNIT_ASSERT(0 == end_nested_struct());
    CPPUNIT_ASSERT(0 == end_nested_struct());
    CPPUNIT_ASSERT(0 == add_array(CHAR_TYPE, 2));
    CPPUNIT_ASSERT(0 == finish_struct(&size));
    CPPUNIT_ASSERT(size == 32);
    printf("TestCase01 Ok!\r\n");
}

void TestCase02()
{
    unsigned int size = 0;
    CPPUNIT_ASSERT(0 == start_struct());
    CPPUNIT_ASSERT(0 == add_basic_type(INT_TYPE));
    CPPUNIT_ASSERT(0 == add_basic_type(DOUBLE_TYPE));
    CPPUNIT_ASSERT(0 == add_basic_type(SHORT_TYPE));
    CPPUNIT_ASSERT(0 == add_array(CHAR_TYPE, 3));
    CPPUNIT_ASSERT(0 == finish_struct(&size));
    CPPUNIT_ASSERT(size == 24);
    printf("TestCase02 Ok!\r\n");
}

int _tmain(int argc, _TCHAR* argv[])
{
    TestCase01();
    TestCase02();
    return 0;
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏一个会写诗的程序员的博客

《Java核心技术》 JVM指令集问题1问题2

Yes, it is as you guessed. The JVM/JRE uses Java bytecode as its instruction set...

642
来自专栏IT可乐

对 Java 集合的巧妙利用

  我们直接切入正题。首先大致介绍一下 Java 三大集合的一些特征: ①、ArrayList:底层采用数组结构,里面添加的元素有序可以重复。   ②、Has...

1635
来自专栏mathor

[kuangbin带你飞]专题一 简单搜索

 看到最短,最少之类的搜索题,基本都是用bfs,这道题大意是说,给一个三维的迷宫,要从S走到E,问最短走几步。普通的bfs是上下左右四个方向扩展,这个bfs...

501
来自专栏mukekeheart的iOS之旅

判断两个单链表是否相交(有环、无环两种)

题目描述:   给定两个单链表的头节点head1和head2,如何判断两个链表是否相交?相交的话返回true,不想交的话返回false。   给定两个链表的头结...

2387
来自专栏10km的专栏

java:Set,Map排序输出到Writer

一般来说java.util.Set,java.util.Map输出的内容的顺序并不是按key的顺序排列的,但是java.util.TreeMap,java.ut...

1779
来自专栏每日一篇技术文章

Swift3.0 - Array

解释: T 为泛型 transform: 闭包函数 我们需要给它传入一个有参数有返回值的闭包函数 [T] 函数会返回给我们一个T类型的数组

801
来自专栏积累沉淀

JVM指令集及各指令的详细使用说明

一、JVM指令助记符 1)操作数栈 变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload...

3499
来自专栏Code_iOS

Objective-C之NSArray学习笔记(IOS 9.1)

982
来自专栏weixuqin 的专栏

数据结构学习笔记(特殊的线性表:栈与队列)

2639
来自专栏软件开发 -- 分享 互助 成长

C++ STL stack和queue

C++ STL中独立的序列式容器只有vector,list,deque三种,stack和queue其实就是使用容器适配器对deque进行了封装,使用了新接口。 ...

1759

扫码关注云+社区