Scalaz(29)- Free :Coyoneda - Functor for free

  很多时候我们会遇到一些高阶类型F[_],但又无法实现它的map函数,也就是虽然形似但F不可能成为Functor。看看下面的例子:

trait Interact[A]
case class Ask(prompt: String) extends Interact[String]
case class Tell(msg: String) extends Interact[Unit]

Interact类型只容许两种实例:Ask继承了Interact[String], Tell继承Interact[Unit]。我们无法获取map[A,B]函数的B值,因而无法实现map函数了。但是,往往在一些场合里我们需要把F当做Functor来使用,如用Free Structure把F升格成Monad。也就是说我们需要把Interact当做Functor才能构建一个基于Interact的Free Monad。Scalaz里的Coyoneda与任何F[_]类型成同构(互等),而Coyoneda是个Functor,这样我们可以用Coyoneda来替代F。在上面的例子里我们只要得出F的Coyoneda,然后我们就可以用这个Coyoneda来替代F,因为它们是同构的。我们来看看Coyoneda的定义:scalaz/Coyoneda.scala

sealed abstract class Coyoneda[F[_], A] { coyo =>
  /** The pivot between `fi` and `k`, usually existential. */
  type I

  /** The underlying value. */
  val fi: F[I]

  /** The transformer function, to be lifted into `F` by `run`. */
  val k: I => A
...
  /** Like `lift(fa).map(_k)`. */
  def apply[F[_], A, B](fa: F[A])(_k: A => B): Aux[F, B, A] =
    new Coyoneda[F, B]{
      type I = A
      val k = _k
      val fi = fa
    }
...
  type Aux[F[_], A, B] = Coyoneda[F, A] {type I = B}

  /** `F[A]` converts to `Coyoneda[F,A]` for any `F` */
  def lift[F[_],A](fa: F[A]): Coyoneda[F, A] = apply(fa)(identity[A])

即使F不是Functor,我们还是可以把F[A]拆成Coyoneda[F,A]。而Coyoneda和F同构,看下面scalaz里的代码:

  type CoyonedaF[F[_]] = ({type A[α] = Coyoneda[F, α]})

  import Isomorphism._

  def iso[F[_]: Functor]: CoyonedaF[F]#A <~> F =
    new IsoFunctorTemplate[CoyonedaF[F]#A, F] {
      def from[A](fa: F[A]) = lift(fa)
      def to[A](fa: Coyoneda[F, A]) = fa.run
    }

我们自己同样可以用更简单的方法来证明:

 1 object proof_coyo {
 2  trait _Coyoneda[F[_],A] {
 3   type I
 4   def k: I => A
 5   def fi: F[I]
 6  }
 7 
 8  def toCoyo[F[_],A](fa: F[A]) =
 9     new _Coyoneda[F, A] {
10       type I = A
11       val k = (a: A) => a
12       val fi = fa
13     }
14  def fromCoyo[F[_]: Functor,A](coyo: _Coyoneda[F,A]): F[A] =
15     Functor[F].map(coyo.fi)(coyo.k)
16    
17 }

对于任何类型F及A, 我们通过toCoyo, fromCoyo可以证明_Coyoneda和F[A]同构。 既然Coyoneda和F[A]同构,那么我们可以这样表述:F[A] >>> Coyoneda[F,A]。也就是说我们可以在任何地方用Coyoneda[F,A]替代F[A]。上面例子中的Interact也可以用Coyoneda替代:

1 trait Interact[A]
2 case class Ask(prompt: String) extends Interact[String]
3 case class Tell(msg: String) extends Interact[Unit]
4 
5 type coyoInteract[A] = Coyoneda[Interact,A]

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏函数式编程语言及工具

Scalaz(38)- Free :Coproduct-Monadic语句组合

   很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程。我想FP作为一种比较成熟的编程模式,应该有一套比较规范...

18010
来自专栏函数式编程语言及工具

Scalaz(26)- Lens: 函数式不可变对象数据操作方式

  scala中的case class是一种特殊的对象:由编译器(compiler)自动生成字段的getter和setter。如下面的例子: 1 case c...

2039
来自专栏函数式编程语言及工具

Cats(3)- freeK-Free编程更轻松,Free programming with freeK

   在上一节我们讨论了通过Coproduct来实现DSL组合:用一些功能简单的基础DSL组合成符合大型多复杂功能应用的DSL。但是我们发现:cats在处理多层...

1797
来自专栏WebHub

MySQL向MongoDB的妥协之JSON

MySQL在5.7.8版本中增加了对json数据的支持,而不再是需要使用字符串形式进行存储。下面简单介绍下MySQL对json的操作:

1623
来自专栏函数式编程语言及工具

Cats(2)- Free语法组合,Coproduct-ADT composition

    上篇我们介绍了Free类型可以作为一种嵌入式编程语言DSL在函数式编程中对某种特定功能需求进行描述。一个完整的应用可能会涉及多样的关联功能,但如果我们为...

2005
来自专栏函数式编程语言及工具

泛函编程(30)-泛函IO:Free Monad-Monad生产线

    在上节我们介绍了Trampoline。它主要是为了解决堆栈溢出(StackOverflow)错误而设计的。Trampoline类型是一种数据结构,它的设...

1707
来自专栏函数式编程语言及工具

泛函编程(31)-泛函IO:Free Monad-Running free

  在上节我们介绍了Free Monad的基本情况。可以说Free Monad又是一个以数据结构替换程序堆栈的实例。实际上Free Monad的功能绝对不止...

21910
来自专栏函数式编程语言及工具

泛函编程(33)-泛函IO:Free Functor - Coyoneda

   在前几期讨论中我们终于推导出了Free Monad。这是一个Monad工厂,它可以把任何F[A]变成Monad。可惜的是它对F[A]是有所要求的:F必须是...

19810
来自专栏计算机视觉与深度学习基础

Leetcode 10 Regular Expression Matching

Implement regular expression matching with support for '.' and '*'. '.' Matches...

1898
来自专栏函数式编程语言及工具

Scalaz(10)- Monad:就是一种函数式编程模式-a design pattern

    Monad typeclass不是一种类型,而是一种程序设计模式(design pattern),是泛函编程中最重要的编程概念,因而很多行内人把FP又称...

17610

扫码关注云+社区