FunDA(16)- 示范:整合并行运算 - total parallelism solution

   在对上两篇讨论中我们介绍了并行运算的两种体现方式:并行构建数据源及并行运算用户自定义函数。我们分别对这两部分进行了示范。本篇我准备示范把这两种情况集成一体的并行运算模式。这次介绍的数据源并行构建方式也与前面描述的有所不同:在前面讨论里我们预知需要从三个独立流来并行构建数据源。但如果我们有一个不知长度的数据流,它的每个元素代表不同的数据流,应该如何处理。我们知道在AQMRPT表里有从1999年到2xxx年的空气质量测量数据,我们可以试着并行把按年份生成的数据流构建成一个数据源。直接使用上期示范中的铺垫代码包括NORMAQM表初始化和从STATES和COUNTIES里用名称搜索对应id的函数:

  val db = Database.forConfig("h2db")

  //drop original table schema
  val futVectorTables = db.run(MTable.getTables)

  val futDropTable = futVectorTables.flatMap{ tables => {
    val tableNames = tables.map(t => t.name.name)
    if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
      db.run(NORMAQMQuery.schema.drop)
    else Future()
  }
  }.andThen {
    case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
    case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
  }
  Await.ready(futDropTable,Duration.Inf)

  //create new table to refine AQMRawTable
  val actionCreateTable = Models.NORMAQMQuery.schema.create
  val futCreateTable = db.run(actionCreateTable).andThen {
    case Success(_) => println("Table created successfully!")
    case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
  }
  //would carry on even fail to create table
  Await.ready(futCreateTable,Duration.Inf)


  //truncate data, only available in slick 3.2.1
  val futTruncateTable = futVectorTables.flatMap{ tables => {
    val tableNames = tables.map(t => t.name.name)
    if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
      db.run(NORMAQMQuery.schema.truncate)
    else Future()
  }
  }.andThen {
    case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
    case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
  }
  Await.ready(futDropTable,Duration.Inf)

  //a conceived task for the purpose of resource consumption
  //getting id with corresponding name from STATES table
  def getStateID(state: String): Int = {
    //create a stream for state id with state name
    implicit def toState(row:  StateTable#TableElementType) = StateModel(row.id,row.name)
    val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
    val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
    //constructed a Stream[Task,String]
    val stateStream =  fda_staticSource(stateSeq)()
    var id  = -1
    def getid: FDAUserTask[FDAROW] = row => {
      row match {
        case StateModel(stid,stname) =>   //target row type
          if (stname.contains(state)) {
            id = stid
            fda_break      //exit
          }
          else fda_skip   //take next row
        case _ => fda_skip
      }
    }
    stateStream.appendTask(getid).startRun
    id
  }
  //another conceived task for the purpose of resource consumption
  //getting id with corresponding names from COUNTIES table
  def getCountyID(state: String, county: String): Int = {
    //create a stream for county id with state name and county name
    implicit def toCounty(row:  CountyTable#TableElementType) = CountyModel(row.id,row.name)
    val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
    val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
    //constructed a Stream[Task,String]
    val countyStream =  fda_staticSource(countySeq)()
    var id  = -1
    def getid: FDAUserTask[FDAROW] = row => {
      row match {
        case CountyModel(cid,cname) =>   //target row type
          if (cname.contains(state) && cname.contains(county)) {
            id = cid
            fda_break      //exit
          }
          else fda_skip   //take next row
        case _ => fda_skip
      }
    }
    countyStream.appendTask(getid).startRun
    id
  }

以及两个用户自定义函数:

  //process input row and produce action row to insert into NORMAQM
  def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
    row match {
      case aqm: AQMRPTModel =>
        if (aqm.valid) {
          val stateId = getStateID(aqm.state)
          val countyId = getCountyID(aqm.state,aqm.county)
          val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
          fda_next(FDAActionRow(action))
        }
        else fda_skip
      case _ => fda_skip
    }
  }
  //runner for the action rows
  val runner = FDAActionRunner(slick.jdbc.H2Profile)
  def runInsertAction: FDAUserTask[FDAROW] = row =>
    row match {
      case FDAActionRow(action) =>
        runner.fda_execAction(action)(db)
        fda_skip
      case _ => fda_skip
    }

跟着是本篇新增代码,我们先构建一个所有年份的流:

 //create parallel sources
  //get a stream of years
  val qryYears = AQMRPTQuery.map(_.year).distinct
  case class Years(year: Int) extends FDAROW

  implicit def toYears(y: Int) = Years(y)

  val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
  val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
  val yearStream = fda_staticSource(yearSeq)()

下面是一个按年份从AQMRPT表读取数据的函数:

  //strong row type
  implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
    AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)

  //shared stream loader when operate in parallel mode
  val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)

  //loading rows with year yr
  def loadRowsInYear(yr: Int) = {
    //a new query
    val query = AQMRPTQuery.filter(row => row.year === yr)
    //reuse same loader
    AQMRPTLoader.fda_typedStream(query.result)(db)(256, 256)()
  }

我们可以预见多个loadRowsInYear函数实例会共享统一的FDAStreamLoader AQMRPTLoader。用户自定义数据读取函数类型是FDASourceLoader。下面是FDASourceLoader示范代码:

  //loading rows by year
  def loadRowsByYear: FDASourceLoader = row => {
    row match {
      case Years(y) => loadRowsInYear(y) //produce stream of the year
      case _ => fda_appendRow(FDANullRow)
    }

  }

我们用toParSource构建一个并行数据源:

  //get parallel source constructor
  val parSource = yearStream.toParSource(loadRowsByYear)

用fda_par_source来把并行数据源转换成统一数据流:

  //produce a stream from parallel sources
  val source = fda_par_source(parSource)(3)

source是个FDAPipeLine,可以直接运算:source.startRun,也可以在后面挂上多个环节。下面我们把其它两个用户自定义函数转成并行运算函数后接到source后面:

  //the following is a process of composition of stream combinators
  //get parallel source constructor
  val parSource = yearStream.toParSource(loadRowsByYear)

  //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
  //produce a stream from parallel sources
  val source = fda_par_source(parSource)(3)
  //turn getIdsThenInsertAction into parallel task
  val parTasks = source.toPar(getIdsThenInsertAction)
  //runPar to produce a new stream
  val actionStream =fda_runPar(parTasks)(3)
  //turn runInsertAction into parallel task
  val parRun = actionStream.toPar(runInsertAction)
  //runPar and carry out by startRun
  fda_runPar(parRun)(2).startRun

下面是本次示范的完整源代码: 

import slick.jdbc.meta._
import com.bayakala.funda._
import api._
import scala.language.implicitConversions
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}
import scala.util.{Failure, Success}
import slick.jdbc.H2Profile.api._
import Models._
import fs2.Strategy

object ParallelExecution extends App {

  val db = Database.forConfig("h2db")

  //drop original table schema
  val futVectorTables = db.run(MTable.getTables)

  val futDropTable = futVectorTables.flatMap{ tables => {
    val tableNames = tables.map(t => t.name.name)
    if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
      db.run(NORMAQMQuery.schema.drop)
    else Future()
  }
  }.andThen {
    case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
    case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
  }
  Await.ready(futDropTable,Duration.Inf)

  //create new table to refine AQMRawTable
  val actionCreateTable = Models.NORMAQMQuery.schema.create
  val futCreateTable = db.run(actionCreateTable).andThen {
    case Success(_) => println("Table created successfully!")
    case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
  }
  //would carry on even fail to create table
  Await.ready(futCreateTable,Duration.Inf)


  //truncate data, only available in slick 3.2.1
  val futTruncateTable = futVectorTables.flatMap{ tables => {
    val tableNames = tables.map(t => t.name.name)
    if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
      db.run(NORMAQMQuery.schema.truncate)
    else Future()
  }
  }.andThen {
    case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
    case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
  }
  Await.ready(futDropTable,Duration.Inf)

  //a conceived task for the purpose of resource consumption
  //getting id with corresponding name from STATES table
  def getStateID(state: String): Int = {
    //create a stream for state id with state name
    implicit def toState(row:  StateTable#TableElementType) = StateModel(row.id,row.name)
    val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
    val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
    //constructed a Stream[Task,String]
    val stateStream =  fda_staticSource(stateSeq)()
    var id  = -1
    def getid: FDAUserTask[FDAROW] = row => {
      row match {
        case StateModel(stid,stname) =>   //target row type
          if (stname.contains(state)) {
            id = stid
            fda_break      //exit
          }
          else fda_skip   //take next row
        case _ => fda_skip
      }
    }
    stateStream.appendTask(getid).startRun
    id
  }
  //another conceived task for the purpose of resource consumption
  //getting id with corresponding names from COUNTIES table
  def getCountyID(state: String, county: String): Int = {
    //create a stream for county id with state name and county name
    implicit def toCounty(row:  CountyTable#TableElementType) = CountyModel(row.id,row.name)
    val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
    val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
    //constructed a Stream[Task,String]
    val countyStream =  fda_staticSource(countySeq)()
    var id  = -1
    def getid: FDAUserTask[FDAROW] = row => {
      row match {
        case CountyModel(cid,cname) =>   //target row type
          if (cname.contains(state) && cname.contains(county)) {
            id = cid
            fda_break      //exit
          }
          else fda_skip   //take next row
        case _ => fda_skip
      }
    }
    countyStream.appendTask(getid).startRun
    id
  }

  //process input row and produce action row to insert into NORMAQM
  def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
    row match {
      case aqm: AQMRPTModel =>
        if (aqm.valid) {
          val stateId = getStateID(aqm.state)
          val countyId = getCountyID(aqm.state,aqm.county)
          val action = NORMAQMQuery += NORMAQMModel(0,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
          fda_next(FDAActionRow(action))
        }
        else fda_skip
      case _ => fda_skip
    }
  }
  //runner for the action rows
  val runner = FDAActionRunner(slick.jdbc.H2Profile)
  def runInsertAction: FDAUserTask[FDAROW] = row =>
    row match {
      case FDAActionRow(action) =>
        runner.fda_execAction(action)(db)
        fda_skip
      case _ => fda_skip
    }

  //create parallel sources
  //get a stream of years
  val qryYears = AQMRPTQuery.map(_.year).distinct
  case class Years(year: Int) extends FDAROW

  implicit def toYears(y: Int) = Years(y)

  val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
  val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
  val yearStream = fda_staticSource(yearSeq)()

  //strong row type
  implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
    AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid)

  //shared stream loader when operate in parallel mode
  val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _)

  //loading rows with year yr
  def loadRowsInYear(yr: Int) = {
    //a new query
    val query = AQMRPTQuery.filter(row => row.year === yr)
    //reuse same loader
    AQMRPTLoader.fda_typedStream(query.result)(db)(256, 256)()
  }

  //loading rows by year
  def loadRowsByYear: FDASourceLoader = row => {
    row match {
      case Years(y) => loadRowsInYear(y) //produce stream of the year
      case _ => fda_appendRow(FDANullRow)
    }

  }


  //start counter
  val cnt_start = System.currentTimeMillis()

  def showRecord: FDAUserTask[FDAROW] = row => {
    row match {
      case Years(y) => println(y); fda_skip
      case aqm: AQMRPTModel =>
        println(s"${aqm.year}  $aqm")
        fda_skip
      case FDAActionRow(action) =>
        println(s"${action}")
        fda_skip
      case _ => fda_skip
    }
  }

  //the following is a process of composition of stream combinators
  //get parallel source constructor
  val parSource = yearStream.toParSource(loadRowsByYear)

  //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
  //produce a stream from parallel sources
  val source = fda_par_source(parSource)(3)
  //turn getIdsThenInsertAction into parallel task
  val parTasks = source.toPar(getIdsThenInsertAction)
  //runPar to produce a new stream
  val actionStream =fda_runPar(parTasks)(3)
  //turn runInsertAction into parallel task
  val parRun = actionStream.toPar(runInsertAction)
  //runPar and carry out by startRun
  fda_runPar(parRun)(2).startRun

  println(s"processing 219400 rows parallelly  in ${(System.currentTimeMillis - cnt_start)/1000} seconds")



}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏函数式编程语言及工具

Akka(29): Http:Server-Side-Api,Low-Level-Api

 Akka-http针对Connection的两头都提供了方便编程的Api,分别是Server-Side-Api和Client-Side-Api。通过这两个Ap...

1948
来自专栏流柯技术学院

JMeter-java.lang.OutOfMemoryError: PermGen space错误

PermGen space的全称是Permanent Generation space,是指内存的永久保存区域, 这块内存主要是被JVM存放Class和Meta...

923
来自专栏个人分享

Hive metastore源码阅读(三)

  上次写了hive metastore的partition的生命周期,但是简略概括了下alter_partition的操作,这里补一下alter_partit...

1082
来自专栏函数式编程语言及工具

ScalaPB(1): using protobuf in akka

2033
来自专栏函数式编程语言及工具

Akka(27): Stream:Use case-Connecting Slick-dbStream & Scalaz-stream-fs2

 在以前的博文中我们介绍了Slick,它是一种FRM(Functional Relation Mapper)。有别于ORM,FRM的特点是函数式的语法可以支持...

2215
来自专栏岑玉海

Spark Streaming自定义Receivers

自定义一个Receiver class SocketTextStreamReceiver(host: String, port: Int( ...

2663
来自专栏码匠的流水账

聊聊spring cloud的HystrixAutoConfiguration

本文主要研究一下spring cloud的HystrixAutoConfiguration

722
来自专栏码匠的流水账

聊聊spring cloud gateway的streaming-media-types属性

本文主要研究下spring cloud gateway的streaming-media-types属性

1011
来自专栏石奈子的Java之路

原 JAVA9琐碎特性

1596
来自专栏函数式编程语言及工具

FunDA(8)- Static Source:保证资源使用安全 - Resource Safety

   我们在前面用了许多章节来讨论如何把数据从后台数据库中搬到内存,然后进行逐行操作运算。我们选定的解决方案是把后台数据转换成内存中的数据流。无论在打开数据库表...

19410

扫码关注云+社区